科目: 來源: 題型:
【題目】如圖所示,AB是⊙O的直徑,AE是弦,C是劣弧AE的中點,過C作CD⊥AB于點D,CD交AE于點F,過C作CG∥AE交BA的延長線于點G.
(1)求證:CG是⊙O的切線.
(2)求證:AF=CF.
查看答案和解析>>
科目: 來源: 題型:
【題目】某五金商店準備從機械廠購進甲、乙兩種零件進行銷售.若每個甲種零件的進價比每個乙種零件的進價少2元,且用900元正好可以購進50個甲種零件和50個乙種零件.
(1)求每個甲種零件、每個乙種零件的進價分別為多少元?
(2)若該五金商店本次購進甲種零件的數(shù)量比購進乙種零件的數(shù)量的3倍還少5個,購進兩種零件的總數(shù)量不超過95個,該五金商店每個甲種零件的銷售價格為12元,每個乙種零件的銷售價格為15元,則將本次購進的甲、乙兩種零件全部售出后,可使銷售兩種零件的總利潤(利潤=售價-進價)超過371元,通過計算求出該五金商店本次從機械廠購進甲、乙兩種零件有哪幾種方案?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方形ABCD中,E是BC上的一點,連接AE,過B點作BH⊥AE,垂足為點H,延長BH交CD于點F,連接AF.
(1)求證AE=BF;
(2)若正方形的邊長是5,BE=2,求AF的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】(本題滿分8分)“切實減輕學生課業(yè)負擔”是我市作業(yè)改革的一項重要舉措.某中學為了解本校學生平均每天的課外作業(yè)時間,隨機抽取部分學生進行問卷調(diào)查,并將調(diào)查結果分為A、B、C、D四個等級.A:1小時以內(nèi),B:1小時-1.5小時,C:1.5小時-2小時,D:小時以上.根據(jù)調(diào)查結果繪制了如圖所示的兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息解答下列問題:
(1)該校共調(diào)查了_________名學生;
(2)請將條形統(tǒng)計圖補充完整;
(3)表示等級A的扇形圓心角的度數(shù)是____________;
(4)在此次問卷調(diào)查中,甲、乙兩班各有2人平均每天課外作業(yè)時間都是2小時以上,從這4人中任選2人去參加座談,用列表或樹狀圖的方法求選出的2人來自不同班級的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】若平面直角坐標系內(nèi)的點M滿足橫、縱坐標都為整數(shù),則把點M叫做“整點”.例如:P(1,0)、Q(2,﹣2)都是“整點”.拋物線y=mx2﹣4mx+4m-2(m0)與x軸交于點A、B兩點,若該拋物線在A、B之間的部分與線段AB所圍成的區(qū)域(包括邊界)恰有七個整點,則m的取值范圍是( )
A. <m≤1B. ≤m<1C. 1<m≤2D. 1<m<2
查看答案和解析>>
科目: 來源: 題型:
【題目】程大位是我國明朝商人,珠算發(fā)明家.他60歲時完成的《直指算法統(tǒng)宗》是東方古代數(shù)學名著,詳述了傳統(tǒng)的珠算規(guī)則,確立了算盤用法.書中有如下問題:
一百饅頭一百僧,大僧三個更無爭,
小僧三人分一個,大小和尚得幾丁.
意思是:有100個和尚分100個饅頭,如果大和尚1人分3個,小和尚3人分1個,正好分完,大、小和尚各有多少人,下列求解結果正確的是( 。
A. 大和尚25人,小和尚75人 B. 大和尚75人,小和尚25人
C. 大和尚50人,小和尚50人 D. 大、小和尚各100人
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對應邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關系式和拋物線的頂點D坐標(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,是一副學生用的三角板,在△ABC 中,∠C=90°,∠A=60°,∠B=30°;在△A1B1C1中,∠C1=90°,∠B1A1 C1=45°,∠B1=45°,且A1B1=CB.若將邊A1C1與邊CA重合,其中點A1與點C重合.將三角板A1B1C1繞點C(A1)按逆時針方向旋轉,旋轉過的角為α,旋轉過程中邊A1C1與邊AB的交點為M,設AC=a.
(1)計算A1C1的長;
(2)當α=30°時,證明:B1C1∥AB;
(3)若a=,當α=45°時,計算兩個三角板重疊部分圖形的面積;
(4)當α=60°時,用含a的代數(shù)式表示兩個三角板重疊部分圖形的面積.
(參考數(shù)據(jù):sin15°=,cos15°=,tan15°=2﹣,sin75°=,cos75°=,tan75°=2+)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形ABCD的四個頂點分別在反比例函數(shù)與(x>0,0<m<n)的圖象上,對角線BD//y軸,且BD⊥AC于點P.已知點B的橫坐標為4.
(1)當m=4,n=20時.
①若點P的縱坐標為2,求直線AB的函數(shù)表達式.
②若點P是BD的中點,試判斷四邊形ABCD的形狀,并說明理由.
(2)四邊形ABCD能否成為正方形?若能,求此時m,n之間的數(shù)量關系;若不能,試說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在矩形ABCD中,點F在邊BC上,且AF=AD,過點D作DE⊥AF,垂足為點E
(1)求證:DE=AB;
(2)以A為圓心,AB長為半徑作圓弧交AF于點G,若BF=FC=1,求扇形ABG的面積.(結果保留π)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com