相關習題
 0  361712  361720  361726  361730  361736  361738  361742  361748  361750  361756  361762  361766  361768  361772  361778  361780  361786  361790  361792  361796  361798  361802  361804  361806  361807  361808  361810  361811  361812  361814  361816  361820  361822  361826  361828  361832  361838  361840  361846  361850  361852  361856  361862  361868  361870  361876  361880  361882  361888  361892  361898  361906  366461 

科目: 來源: 題型:

【題目】某測量隊在山腳A處測得山上樹頂仰角為45°(如圖),測量隊在山坡上前進600米到D處,再測得樹頂?shù)难鼋菫?/span>60°,已知這段山坡的坡角為30°,如果樹高為15米,則山高為(  )(精確到1米, =1.732).

A. 585 B. 1014 C. 805 D. 820

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖1,在平面直角坐標系中,二次函數(shù)軸于兩點,(點在點的左側(cè))與軸交于點,連接

1)求點、點和點的坐標;

2)如圖2,若點為第四象限內(nèi)拋物線上一動點,點的橫坐標為,的面積為.求關于的函數(shù)關系式,并求出的最大值;

3)拋物線的對稱軸上是否存在點,使為等腰三角形?若存在,請直接寫出所有點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】綜合與實踐:

如圖1,將一個等腰直角三角尺的頂點放置在直線上,,,過點于點,過點于點

觀察發(fā)現(xiàn):

1)如圖1.當兩點均在直線的上方時,

①猜測線段的數(shù)量關系,并說明理由;

②直接寫出線段,的數(shù)量關系;

操作證明:

2)將等腰直角三角尺繞著點逆時針旋轉(zhuǎn)至圖2位置時,線段,又有怎樣的數(shù)量關系,請寫出你的猜想,并寫出證明過程;

拓廣探索:

3)將等腰直角三用尺繞著點繼續(xù)旋轉(zhuǎn)至圖3位置時,交于點,若,請直接寫出的長度.

查看答案和解析>>

科目: 來源: 題型:

【題目】閱讀下列材料,并完成相應任務.

古希臘數(shù)學家,天文學家歐多克索斯(Eudoxus,約前400—347)曾提出:能否將一

條線段分成不相等的兩部分.使較短線段與較長線段的比等于較長線段與原線段的比,這個相等的比就是,黃金分割在我們生活中有廣泛運用.黃金分割點也可以用折紙的方式得到.

第一步:裁一張正方形的紙片,先折出的中點,然后展平,再折出線段,再展平;

第二步:將紙片沿折疊,使落到線段上,的對應點為,展平;

第三步:沿折疊,使落在上,的對應點為,展平,這時就是的黃金分割點.

古希臘數(shù)學家,天文學家歐多克索斯(Eudoxus,約前400—347)曾提出:能否將一

條線段分成不相等的兩部分.使較短線段與較長線段的比等于較長線段與原線段的比,這個相等的比就是,黃金分割在我們生活中有廣泛運用.黃金分割點也可以用折紙的方式得到.

第一步:裁一張正方形的紙片,先折出的中點,然后展平,再折出線段,再展平;

第二步:將紙片沿折疊,使落到線段上,的對應點為,展平;

第三步:沿折疊,使落在上,的對應點為,展平,這時就是的黃金分割點.

任務:(1)試根據(jù)以上操作步驟證明就是的黃金分割點;

2)請寫出一個生活中應用黃金分割的實際例子.

查看答案和解析>>

科目: 來源: 題型:

【題目】一聲汽笛長鳴,火車開進了蔡家崖.這是我省呂梁革命老區(qū)人民期盼已久的客運列車.蔡家崖列車的開通.帶動老區(qū)駛?cè)肓税l(fā)展紅色旅游的快車進.某旅行社對去年國慶期間到呂梁觀光的游客的出行方式進行了隨機抽樣調(diào)查,整理后繪制了兩幅統(tǒng)計圖(尚不完整).根據(jù)圖中信息,回答下列問題:

1)求本次抽樣調(diào)查的總?cè)藬?shù):

2)補全條形統(tǒng)計圖;

3)扇形統(tǒng)計圖中其他部分扇形的圓心角度數(shù)為____;

4)去年國慶期問到呂梁觀光的旅游者為275萬人,則選擇自駕方式出行的有多少萬人.

查看答案和解析>>

科目: 來源: 題型:

【題目】20198月.山西龍城將迎來全國第二屆青年運動會,盛會將至,整個城市已經(jīng)進入了全力準備的狀態(tài).太職學院足球場作為一個重要比賽場館.占地面積約24300平方米.總建筑面積4790平方米,設有2476個座位,整體建筑簡潔大方,獨具特色.2018315日該場館如期開工,某施工隊負責安裝該場館所有座位,在安裝完476個座位后,采用新技術,效率比原來提升了.結(jié)來比原計劃提前4天完成安裝任務.求原計劃每天安裝多少個座位.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖1,在平面直角坐標系中,二次函數(shù)軸于兩點,(點在點的左側(cè))與軸交于點,連接

1)求點、點和點的坐標;

2)如圖2,若點為第四象限內(nèi)拋物線上一動點,點的橫坐標為,的面積為.求關于的函數(shù)關系式,并求出的最大值;

3)拋物線的對稱軸上是否存在點,使為等腰三角形?若存在,請直接寫出所有點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】綜合與實踐:

如圖1,將一個等腰直角三角尺的頂點放置在直線上,,過點于點,過點于點

觀察發(fā)現(xiàn):

1)如圖1.當,兩點均在直線的上方時,

①猜測線段,的數(shù)量關系,并說明理由;

②直接寫出線段的數(shù)量關系;

操作證明:

2)將等腰直角三角尺繞著點逆時針旋轉(zhuǎn)至圖2位置時,線段,又有怎樣的數(shù)量關系,請寫出你的猜想,并寫出證明過程;

拓廣探索:

3)將等腰直角三用尺繞著點繼續(xù)旋轉(zhuǎn)至圖3位置時,交于點,若,,請直接寫出的長度.

查看答案和解析>>

科目: 來源: 題型:

【題目】閱讀下列材料,并完成相應任務.

古希臘數(shù)學家,天文學家歐多克索斯(Eudoxus,約前400—347)曾提出:能否將一

條線段分成不相等的兩部分.使較短線段與較長線段的比等于較長線段與原線段的比,這個相等的比就是,黃金分割在我們生活中有廣泛運用.黃金分割點也可以用折紙的方式得到.

第一步:裁一張正方形的紙片,先折出的中點,然后展平,再折出線段,再展平;

第二步:將紙片沿折疊,使落到線段上,的對應點為,展平;

第三步:沿折疊,使落在上,的對應點為,展平,這時就是的黃金分割點.

古希臘數(shù)學家,天文學家歐多克索斯(Eudoxus,約前400—347)曾提出:能否將一

條線段分成不相等的兩部分.使較短線段與較長線段的比等于較長線段與原線段的比,這個相等的比就是,黃金分割在我們生活中有廣泛運用.黃金分割點也可以用折紙的方式得到.

第一步:裁一張正方形的紙片,先折出的中點,然后展平,再折出線段,再展平;

第二步:將紙片沿折疊,使落到線段上,的對應點為,展平;

第三步:沿折疊,使落在上,的對應點為,展平,這時就是的黃金分割點.

任務:(1)試根據(jù)以上操作步驟證明就是的黃金分割點;

2)請寫出一個生活中應用黃金分割的實際例子.

查看答案和解析>>

科目: 來源: 題型:

【題目】一聲汽笛長鳴,火車開進了蔡家崖.這是我省呂梁革命老區(qū)人民期盼已久的客運列車.蔡家崖列車的開通.帶動老區(qū)駛?cè)肓税l(fā)展紅色旅游的快車進.某旅行社對去年國慶期間到呂梁觀光的游客的出行方式進行了隨機抽樣調(diào)查,整理后繪制了兩幅統(tǒng)計圖(尚不完整).根據(jù)圖中信息,回答下列問題:

1)求本次抽樣調(diào)查的總?cè)藬?shù):

2)補全條形統(tǒng)計圖;

3)扇形統(tǒng)計圖中其他部分扇形的圓心角度數(shù)為____;

4)去年國慶期問到呂梁觀光的旅游者為275萬人,則選擇自駕方式出行的有多少萬人.

查看答案和解析>>

同步練習冊答案