科目: 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,點A的坐標是(0,1),點B的坐標是(0,﹣2),反比例函數(shù)y=的圖象經(jīng)過點C,一次函數(shù)y=ax+b的圖象經(jīng)過A、C兩點,兩函數(shù)圖象的另一個交點E的坐標是(m,3).
(1)分別求出一次函數(shù)與反比例函數(shù)的解析式.
(2)求出m的值,并根據(jù)圖象回答:當x為何值時,一次函數(shù)的值大于反比例函數(shù)的值.
(3)若點P是反比例函數(shù)圖象上的一點,△AOP的面積恰好等于正方形ABCD的面積,求點P坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】重慶渴樂自駕游公司在元旦節(jié)推出四條自駕線路,為調(diào)查客戶對各條線路的喜歡情況,微信群里做了一次“我最期待的自駕線路”問卷調(diào)查(群里每個人都進行了調(diào)查且只選擇一條線路),統(tǒng)計后發(fā)現(xiàn)選湘西的人數(shù)比選畢棚溝的少6人;選邛海的人數(shù)不僅比選畢棚溝的多,且為整數(shù)倍:選畢棚溝與邛海的人數(shù)之和是選擇湘西和北海的人數(shù)之和的4倍;選北海和邛海的人數(shù)之和比選湘西與畢棚溝的人數(shù)之和多22人,則該微信群里參與調(diào)查的共_____人.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正方形ABCD的邊AB上取一點E,連接CE,將△BCE沿CE翻折,點B恰好與對角線AC上的點F重合,連接DF,若BE=1,則△CDF的面積是_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點E是CD邊上一點,,連接AE、BE、BD,且AE、BD交于點F.若,則( 。
A.15.5B.16.5C.17.5D.18.5
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,矩形ABCD的邊AB=4,BC=6.若不改變矩形ABCD的形狀和大小,當矩形頂點A在x軸的正半軸上左右移動時,矩形的另一個頂點D始終在y軸的正半軸上隨之上下移動.
(1)當∠OAD=30°時,求點C的坐標;
(2)設(shè)AD的中點為M,連接OM、MC,當四邊形OMCD的面積為時,求OA的長;
(3)當點A移動到某一位置時,點C到點O的距離有最大值,請直接寫出最大值,并求此時cos∠OAD的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=-x2+bx+c與x軸交于A、B兩點,且B點的坐標為(3,0),經(jīng)過A點的直線交拋物線于點D (2, 3).
(1)求拋物線的解析式和直線AD的解析式;
(2)過x軸上的點E (a,0) 作直線EF∥AD,交拋物線于點F,是否存在實數(shù)a,使得以A、D、E、F為頂點的四邊形是平行四邊形?如果存在,求出滿足條件的a;如果不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知△ABC內(nèi)接于⊙O,且AB=AC,直徑AD交BC于點E,F是OE上的一點,使CF∥BD.
(1)求證:BE=CE;
(2)若BC=8,AD=10,求四邊形BFCD的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】趙化鑫城某超市購進了一批單價為16元的日用品,銷售一段時間后,為獲得更多的利潤,商場決定提高銷售的價格,經(jīng)試驗發(fā)現(xiàn),若按每件20元銷售,每月能賣360件;若按每件25元銷售,每月能賣210件;若每月的銷售件數(shù)y(件)與價格x(元/件)滿足y=kx+b.
(1)求出k與b的值,并指出x的取值范圍?
(2)為了使每月獲得價格利潤1920元,商品價格應(yīng)定為多少元?
(3)要使每月利潤最大,商品價格又應(yīng)定為多少?最大利潤是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,有四張背面相同的卡片A、B、C、D,卡片的正面分別印有正三角形、平行四邊形、圓、正五邊形(這些卡片除圖案不同外,其余均相同).把這四張卡片背面向上洗勻后,進行下列操作:
(1)若任意抽取其中一張卡片,抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是 ;
(2)若任意抽出一張不放回,然后再從余下的抽出一張.請用樹狀圖或列表表示摸出的兩張卡片所有可能的結(jié)果,求抽出的兩張卡片的圖形是中心對稱圖形的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com