科目: 來源: 題型:
【題目】閱讀材料,解決問題:
材料1:在研究數的整除時發(fā)現:能被5、25、125、625整除的數的特征是:分別看這個數的末一位、末兩位、末三位、末四位即可,推廣成一條結論;末位能被整除的數,本身必能被整除,反過來,末位不能被整除的數,本身也不可能被整除,例如判斷992250能否被25、625整除時,可按下列步驟計算:
,為整數,能被25整除
,不為整數,不能被625整除
材料2:用奇偶位差法判斷一個數能否被11這個數整除時,可把這個數的奇位上的數字與偶位上的數字分別加起來,再求它們的差,看差能否被11整除,若差能被11整除,則原數能被11整除,反之則不能.
(1)若這個三位數能被11整除,則 ;在該三位數末尾加上和為8的兩個數字,讓其成為一個五位數,該五位數仍能被11整除,求這個五位數
(2)若一個六位數p的最高位數字為5,千位數字是個位數字的2倍,且這個數既能被125整除,又能被11整除,求這個數.
查看答案和解析>>
科目: 來源: 題型:
【題目】圖中線段AB表示某工程的部分隧道,無人勘測飛機從隧道的一側點A出發(fā),沿著坡度為1:1.5的路線AE飛行,飛行至分界點C的正上方點D時,測得隧道另一側點B的俯角為23°,繼續(xù)飛行至點E,測得點B的俯角為45°,此時點E離地面的高度EF=800米.
(1)分別求隧道AC和BC段的長度;
(2)建工集團安排甲、乙兩個金牌施工隊分別從隧道兩頭向中間施工,甲隊負責AC段施工,乙隊負責BC段施工,乙每天的工作量是甲的2倍,兩隊同時開工5天后,甲隊將速度提高25%,乙隊將速度提高了150%,從而兩隊同時完成,求原計劃甲、乙兩隊每天各施工多少米.(參考數據:tan23°≈0.4,cos23°≈0.9)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線11:y1=kx+b與反比例函數y2=相交于A(﹣1,4)和B(﹣4,a),直線12:y3=﹣x+e與反比例函數y2=相交于B、C兩點,交y軸于點D,連接OB,OC,OA.
(1)求反比例函數的解析式和c的值;
(2)求△BOC的面積;
(3)直接寫出當kx+b≥時x的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,等腰直角△ABC,OC=2,拋物線y=ax2+c過A,B,C三點,D為拋物線上一點,連接BD且tan∠DBC=.
(1)求直線BD和拋物線所表示的函數解析式.
(2)如果在拋物線上有一點E,使得S△EBC=S△ABD,求這時E點坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:在Rt△ABC中,AB⊥BC,點O是AC的中點,連接OB,過C點作CD⊥OB,交BO的延長線于垂足D,BC=8,sinα=.
求:(1)線段OC的長;
(2)cos∠DOC的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,已知雙曲線y=(x<0)和 y=(x>0),直線OA與雙曲線y=交于點A,將直線OA向下平移與雙曲線y=交于點B,與y軸交于點P,與雙曲線y=交于點C,S△ABC=6,,則k=_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在坡度i=1:的斜坡AB上立有一電線桿EF,工程師在點A處測得E的仰角為60°,沿斜坡前進20米到達B,此時測得點E的仰角為15°,現要在斜坡AB上找一點P,在P處安裝一根拉繩PE來固定電線桿,以使EF保持豎直,為使拉繩PE最短,則FP的長度約為_____.(參考數據:=1.414,=1.732)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線y1=x與雙曲線y2=(x>0)交于點A,將直線y1=x向下平移4個單位后稱該直線為y3,若y3與雙曲線交于B,與x軸交于C,與y軸交于D,AO=2BC,連接AB,則以下結論錯誤的有( )
①點C坐標為(3,0);②k=;③S四邊形OCBA=;④當2<x<4時,有y1>y2>y3;⑤S四邊形ABDO=2S△COD.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點E是矩形ABCD中CD邊上一點,△BCE沿BE折疊為△BFE,點F落在AD上.若sin∠DFE=,則tan∠EBC的值為( 。
A.B.C.D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com