我們知道,“直角三角形斜邊上的高線將三角形分成兩個與原三角形相似的直角三角形”用這一方法,將矩形ABCD分割成大小不同的七個相似直角三角形.按從大到小的順序編號為①至⑦(如圖),從而割成一副“三角七巧板”.已知線段AB=1,∠BAC=θ.
(1)請用θ的三角函數(shù)表示線段BE的長______;
(2)圖中與線段BE相等的線段是______;
(3)仔細觀察圖形,求出⑦中最短的直角邊DH的長.(用θ的三角函數(shù)表示)

【答案】分析:(1)可在直角三角形ABE中,用AB的長和正弦函數(shù)來求出BE.
(2)應該是DF,因為矩形ABCD中,AB=CD,∠BAC=∠ACD=θ,那么DF也應該是sinθ,因此BE=DF.(也可用全等來證明)
(3)由于這些三角形都相似,那么∠DFG=∠DGH=∠ACD=θ,那么可先在直角三角形FGD中,用FG和正弦函數(shù)求出GD,然后在直角三角形GHD中,用DG和正弦函數(shù)求出DH.
解答:解:(1)∵sinθ=,AB=1,
∴BE=sinθ.

(2)∵AB=CD,∠BAC=∠ACD=θ,
∴DF也應該是sinθ,
∴BE=DF.

(3)解:由(1)(2)知DF=BE=sinθ,
由題意得Rt△DFG∽Rt△CAB,
∴∠DFG=∠CAB=θ.
在Rt△DFG中,
∵sin∠DFG=,DF=sinθ,
∴DG=sin2θ.
∵Rt△DGH∽Rt△DFG,
∴∠DGH=∠DFG=θ.
在Rt△DGH中,
sin∠DGH=,DG=sin2θ,
∴DH=sin3θ.
點評:本題主要考查了相似三角形的性質(zhì)和解直角三角形的綜合應用,根據(jù)已知和所求的條件正確的選用三角函數(shù)是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

我們知道,“直角三角形斜邊上的高線將三角形分成兩個與原三角形相似的直角三角形”用這一方法,將矩形ABCD分割成大小不同的七個相似直角三角形.按從大到小的順序編號為①至⑦(如圖),從而割成一副“三角七巧板”.已精英家教網(wǎng)知線段AB=1,∠BAC=θ.
(1)請用θ的三角函數(shù)表示線段BE的長
 
;
(2)圖中與線段BE相等的線段是
 
;
(3)仔細觀察圖形,求出⑦中最短的直角邊DH的長.(用θ的三角函數(shù)表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•奉賢區(qū)一模)通過學習銳角三角比,我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值是一一對應的,因此,兩條邊長的比值與角的大小之間可以相互轉(zhuǎn)化.類似的,可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做底角的鄰對(can),如圖(1)在△ABC中,AB=AC,底角B的鄰對記作canB,這時canB=
底邊
=
BC
AB
,容易知道一個角的大小與這個角的鄰對值也是一一對應的.根據(jù)上述角的鄰對的定義,解下列問題:
(1)can30°=
3
3

(2)如圖(2),已知在△ABC中,AB=AC,canB=
8
5
,S△ABC=24,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

我們知道,“直角三角形斜邊上的高線將三角形分成兩個與原三角形相似的直角三角形”用這一方法,將矩形ABCD分割成大小不同的七個相似直角三角形.按從大到小的順序編號為①至⑦(如圖),從而割成一副“三角七巧板”.已知線段AB=1,∠BAC=θ.
(1)請用θ的三角函數(shù)表示線段BE的長______;
(2)圖中與線段BE相等的線段是______;
(3)仔細觀察圖形,求出⑦中最短的直角邊DH的長.(用θ的三角函數(shù)表示)

查看答案和解析>>

科目:初中數(shù)學 來源:第4章《銳角三角形》中考題集(26):4.3 解直角三角形及其應用(解析版) 題型:解答題

我們知道,“直角三角形斜邊上的高線將三角形分成兩個與原三角形相似的直角三角形”用這一方法,將矩形ABCD分割成大小不同的七個相似直角三角形.按從大到小的順序編號為①至⑦(如圖),從而割成一副“三角七巧板”.已知線段AB=1,∠BAC=θ.
(1)請用θ的三角函數(shù)表示線段BE的長______;
(2)圖中與線段BE相等的線段是______;
(3)仔細觀察圖形,求出⑦中最短的直角邊DH的長.(用θ的三角函數(shù)表示)

查看答案和解析>>

同步練習冊答案