設(shè),數(shù)列{an}滿足:a1=f(1),an+1=f(an)(n∈N*),則a2010=( )
A.
B.
C.
D.
【答案】分析:先根據(jù)題意:f(x)=,數(shù)列{an}滿足:a1=f(1),且an+1=f(an),其中n∈N*,計算出前幾項:a1,a2…再根據(jù)規(guī)律依此類推,a2010的值即可.
解答:解:∵f(x)=,數(shù)列{an}滿足:a1=f(1),且an+1=f(an),其中n∈N*,
則a1=f(1)==,
a2=f(a1)==

依此類推,a2010=,
故選B.
點評:本小題主要考查數(shù)列與函數(shù)的綜合、合情推理等基礎(chǔ)知識,考查運算求解能力與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足2axf(x)=2f(x)-1,f(1)=1,設(shè)無窮數(shù)列{an}滿足an+1=f(an).
(1)求函數(shù)f(x)的表達(dá)式;
(2)若a1=3,從第幾項起,數(shù)列{an}中的項滿足an<an+1;
(3)若1+
1
m
<a1
m
m-1
(m為常數(shù)且m∈N,m≠1),求最小自然數(shù)N,使得當(dāng)n≥N時,總有0<an<1成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南通二模)設(shè)無窮數(shù)列{an}滿足:?n∈N*,an<an+1,anN*.記bn=aan,  cn=aan+1(n∈N*)
(1)若bn=3n(n∈N*),求證:a1=2,并求c1的值;
(2)若{cn}是公差為1的等差數(shù)列,問{an}是否為等差數(shù)列,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)已知函數(shù)f(x)滿足2ax·f(x)=2f(x)-1,f(1)=1,設(shè)無窮數(shù)列{an}滿足an+1=f(an).(1)求函數(shù)f(x)的表達(dá)式;(2)若a1=3,從第幾項起,數(shù)列{an}中的項滿足anan+1;(3)若a1m為常數(shù)且mN+,m≠1),求最小自然數(shù)N,使得當(dāng)nN時,總有0<an<1成立。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年湖南省益陽市沅江市高三質(zhì)量檢測數(shù)學(xué)試卷1(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=x2+(a-3)x+a2-3a(a為常數(shù)).
(1)如果對任意x∈[1,2],f(x)>a2恒成立,求實數(shù)a的取值范圍;
(2)設(shè)實數(shù)p,q,r滿足:p,q,r中的某一個數(shù)恰好等于a,且另兩個恰為方程f(x)=0的兩實根,判斷①p+q+r,②p2+q2+r2,③p3+q3+r3是否為定值?若是定值請求出:若不是定值,請把不是定值的表示為函數(shù)g(a),并求g(a)的最小值;
(3)對于(2)中的g(a),設(shè),數(shù)列{an}滿足an+1=H(an)(n∈N*),且a1∈(0,1),試判斷an+1與an的大小,并證明之.

查看答案和解析>>

同步練習(xí)冊答案