【題目】如圖,某辦公樓AB的右邊有一建筑物CD,在建設(shè)物CD離地面2米高的點(diǎn)E處觀測辦公樓頂A點(diǎn),測得的仰角=,在離建設(shè)物CD 25米遠(yuǎn)的F點(diǎn)觀測辦公樓頂A點(diǎn),測得的仰角=(B,F,C在一條直線上).
(1)求辦公樓AB的高度;
(2)若要在A,E之間掛一些彩旗,請你求出A,E之間的距離.(參考數(shù)據(jù):)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A是反比例函數(shù)y=圖象在第一象限上的一點(diǎn),連結(jié)AO并延長交圖象的另一分支于點(diǎn)B,延長BA至點(diǎn)C,過點(diǎn)C作CD⊥x軸,垂足為D,交反比例函數(shù)圖象于點(diǎn)E.若,△BDC的面積為6,則k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C,D在⊙O上,且AB=5,BC=3.
(1) 求sin∠BAC的值;
(2) 如果OE⊥AC, 垂足為E,求OE的長;
(3) 求tan∠ADC的值.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綠色生態(tài)農(nóng)場生產(chǎn)并銷售某種有機(jī)產(chǎn)品,假設(shè)生產(chǎn)出的產(chǎn)品能全部售出.如圖,線段EF、折線ABCD分別表示該有機(jī)產(chǎn)品每千克的銷售價y1(元)、生產(chǎn)成本y2(元)與產(chǎn)量x(kg)之間的函數(shù)關(guān)系.
(1)求該產(chǎn)品銷售價y1(元)與產(chǎn)量x(kg)之間的函數(shù)關(guān)系式;
(2)直接寫出生產(chǎn)成本y2(元)與產(chǎn)量x(kg)之間的函數(shù)關(guān)系式;
(3)當(dāng)產(chǎn)量為多少時,這種產(chǎn)品獲得的利潤最大?最大利潤為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)的某種時令商品每件成本為元,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種商品在未來天內(nèi)的日銷售量(件)與時間(天)的關(guān)系如圖:
未來天內(nèi),前天每天的價格(元/件)與時間(天)的函數(shù)關(guān)系式為,且為整數(shù)),后天每天的價格元/件(,且為整數(shù)).下面我們來研究銷售這種商品的有關(guān)問題:
(1)認(rèn)真分析圖中的數(shù)據(jù),用所學(xué)過的一次函數(shù)、二次函數(shù)、反比例函數(shù)的知識確定一個滿足這些數(shù)據(jù)的(件)與(天)之間的關(guān)系式;
(2)請預(yù)測未來天中哪一天的日銷售利潤最大,最大日銷售利潤是多少?
(3)在實(shí)際銷售的前天中,該公司決定每銷售一件商品就捐贈元利潤給希望工程.公司通過銷售記錄發(fā)現(xiàn),前天扣除捐贈后的日銷售利潤隨時間(天)的增大而增大,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,將二次函數(shù)y=a(a>0)的圖象向右平移1個單位,再向下平移2個單位,得到如圖所示的拋物線,該拋物線與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),OA=1,經(jīng)過點(diǎn)A的一次函數(shù)()的圖象與y軸正半軸交于點(diǎn)C,且與拋物線的另一個交點(diǎn)為D,△ABD的面積為5.
(1)求拋物線和一次函數(shù)的解析式;
(2)拋物線上的動點(diǎn)E在一次函數(shù)的圖象下方,求△ACE面積的最大值,并求出此時點(diǎn)E的坐標(biāo);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖甲,直線y=﹣x+3與x軸、y軸分別交于點(diǎn)B、點(diǎn)C,經(jīng)過B、C兩點(diǎn)的拋物線y=x2+bx+c與x軸的另一個交點(diǎn)為A,頂點(diǎn)為P.
(1)求該拋物線的解析式;
(2)在該拋物線的對稱軸上是否存在點(diǎn)M,使以C,P,M為頂點(diǎn)的三角形為等腰三角形?若存在,請直接寫出所符合條件的點(diǎn)M的坐標(biāo);若不存在,請說明理由;
(3)當(dāng)0<x<3時,在拋物線上求一點(diǎn)E,使△CBE的面積有最大值(圖乙、丙供畫圖探究).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,點(diǎn)E、F分別在邊AB、BC上,DE、AF交于點(diǎn)M.
(1)如圖1,E為AB的中點(diǎn),AF⊥BC交BC于點(diǎn)F,過點(diǎn)E作EN⊥AF交AF于點(diǎn)N,,直接寫出的值是 ;
(2)如圖2,∠B=90°,∠ADE=∠BAF,求證:△AEM∽△AFB;
(3)如圖3,∠B=60°,AB=AD,∠ADE=∠BAF,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B兩所學(xué)校的學(xué)生都參加了某次體育測試,成績均為7﹣10分,且為整數(shù).亮亮分別從這兩所學(xué)校各隨機(jī)抽取一部分學(xué)生的測試成績,共200份,并繪制了如下尚不完整的統(tǒng)計圖.
(1)這200份測試成績的中位數(shù)是 分,m= ;
(2)補(bǔ)全條形統(tǒng)計圖;扇形統(tǒng)計圖中,求成績?yōu)?/span>10分所在扇形的圓心角的度數(shù).
(3)亮亮算出了“1名A校學(xué)生的成績被抽到”的概率是,請你估計A校成績?yōu)?/span>8分的學(xué)生大約有多少名.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com