分析 求出拋物線的方程,直線方程與拋物線方程聯(lián)解得一個(gè)關(guān)于x的一元二次方程,利用根與系數(shù)的關(guān)系結(jié)合曲線的弦長的公式,可以求出線段AB的長度.利用點(diǎn)到直線的距離求出三角形的高,即可求解面積.
解答 解:∵拋物線y2=2px的焦點(diǎn)坐標(biāo)為(2,0),
∴p=4,
∴拋物線方程為y2=8x
直線y=x-2代入到拋物線方程中,得:(x-2)2=8x
整理得:x2-12x+4=0
設(shè)A(x1,y1),B(x2,y2)
由一元二次方程根與系數(shù)的關(guān)系得:x1+x2=12,x1•x2=4,
所以弦長|AB|=$\sqrt{1+{k}^{2}}$|x1-x2|=$\sqrt{2}•\sqrt{144-16}$=16.
O到直線的距離為:d=$\frac{2}{\sqrt{2}}$=$\sqrt{2}$,
△AOB的面積為:$\frac{1}{2}×16×\sqrt{2}$=8$\sqrt{2}$.
故答案為:8$\sqrt{2}$.
點(diǎn)評 本題以拋物線為載體,考查了圓錐曲線的弦長問題,屬于難題.本題運(yùn)用了直線方程與拋物線方程聯(lián)解的方法,對運(yùn)算的要求較高.利用一元二次方程根與系數(shù)的關(guān)系和弦長公式是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 2 | C. | $\sqrt{5}$ | D. | $2\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (x-2)2+y2=$\sqrt{10}$ | B. | (x+2)2+y2=10 | C. | (x+2)2+y2=$\sqrt{10}$ | D. | (x-2)2+y2=10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 7 | C. | 6 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | tan2θ | B. | cot4θ | C. | tan4θ | D. | cot2θ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2187 | C. | 2188 | D. | -2187 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com