【題目】中國農(nóng)業(yè)銀行廣元分行發(fā)行金穗廣元·劍門關(guān)旅游卡是以游廣元、知廣元、愛廣元、共享和諧廣元為主題活動(dòng)的一項(xiàng)經(jīng)濟(jì)性和公益性相結(jié)合的重大舉措,以最優(yōu)惠的價(jià)格惠及廣元戶籍市民、浙江及黑龍江援建省群眾、省內(nèi)援建市市民,凡上述對(duì)象均可辦理此卡,本人憑此卡及本人身份證一年內(nèi)(期滿后可重新充值辦理)在廣元市范圍內(nèi)可無限次游覽所有售門票景區(qū)景點(diǎn),如:劍門關(guān)、朝天明月峽、旺蒼鼓城山七里峽、青川唐家河、廣元皇澤寺、蒼溪梨博園、昭化古城等,現(xiàn)有浙江及黑龍江援建省群眾甲乙兩人準(zhǔn)備到廣元旅游(同游),他們決定游覽上面個(gè)景點(diǎn),首先游覽劍門關(guān)但不能最后游覽朝天明月峽的游覽順序有( )種.

A.B.C.D.

【答案】C

【解析】

問題轉(zhuǎn)化為七個(gè)元素排成一列,劍門關(guān)排在最左邊,朝天明月峽不排在最右邊,共有多少種排法.然后根據(jù)分步乘法計(jì)數(shù)原理可得答案.

問題轉(zhuǎn)化為七個(gè)元素排成一列,劍門關(guān)排在最左邊,朝天明月峽不排在最右邊,共有多少種排法.

分三步:第一步,排最左邊,只能排劍門關(guān),有一種排法;

第二步,排最右邊,從除朝天明月峽以外的其余五個(gè)元素中任選一種排,有種;

第三步,排其余五個(gè)位置,共有種,

根據(jù)分步乘法計(jì)算原理可得共有.

所以首先游覽劍門關(guān)但不能最后游覽朝天明月峽的游覽順序有600種.

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》中記載:將底面為直角三角形的直三棱柱稱為塹堵,將一塹堵沿其一頂點(diǎn)與相對(duì)的棱剖開,得到一個(gè)陽馬(底面是長方形,且有一條側(cè)棱與底面垂直的四棱錐)和一個(gè)鱉臑(四個(gè)面均為直角三角形的四面體).在如圖所示的塹堵中,且有鱉臑C1-ABB1和鱉臑,現(xiàn)將鱉臑沿線BC1翻折,使點(diǎn)C與點(diǎn)B1重合,則鱉臑經(jīng)翻折后,與鱉臑拼接成的幾何體的外接球的表面積是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn).對(duì)任意的點(diǎn),定義.任取點(diǎn),,記,,若此時(shí)成立,則稱點(diǎn)相關(guān).

1)分別判斷下面各組中兩點(diǎn)是否相關(guān),并說明理由;

,;②,

2)給定,,點(diǎn)集

)求集合中與點(diǎn)相關(guān)的點(diǎn)的個(gè)數(shù);

)若,且對(duì)于任意的,,點(diǎn)相關(guān),求中元素個(gè)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20202月,全國掀起了“停課不停學(xué)”的熱潮,各地教師通過網(wǎng)絡(luò)直播、微課推送等多種方式來指導(dǎo)學(xué)生線上學(xué)習(xí).為了調(diào)查學(xué)生對(duì)網(wǎng)絡(luò)課程的熱愛程度,研究人員隨機(jī)調(diào)查了相同數(shù)量的男、女學(xué)生,發(fā)現(xiàn)有的男生喜歡網(wǎng)絡(luò)課程,有的女生不喜歡網(wǎng)絡(luò)課程,且有的把握但沒有的把握認(rèn)為是否喜歡網(wǎng)絡(luò)課程與性別有關(guān),則被調(diào)查的男、女學(xué)生總數(shù)量可能為(

附:,其中.

k

A.130B.190C.240D.250

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),直線過原點(diǎn)且傾斜角為,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

1)求曲線和直線的極坐標(biāo)方程;

2)若相交于不同的兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)對(duì)任意的都有,且時(shí)的最大值為,下列四個(gè)結(jié)論:①的一個(gè)極值點(diǎn);②若為奇函數(shù),則的最小正周期;③若為偶函數(shù),則上單調(diào)遞增;④的取值范圍是.其中一定正確的結(jié)論編號(hào)是(

A.①②B.①③C.①②④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn),,動(dòng)點(diǎn)滿足直線MP與直線NP的斜率之積為.記動(dòng)點(diǎn)P的軌跡為曲線C.

1)求曲線C的方程,并說明C是什么曲線;

2)過點(diǎn)作直線與曲線C交于不同的兩點(diǎn)AB,試問在x軸上是否存在定點(diǎn)Q,使得直線QA與直線QB恰好關(guān)于x軸對(duì)稱?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,,,的中點(diǎn),點(diǎn),分別在線段,上運(yùn)動(dòng)(其中不與,重合,不與,重合),且,沿折起,得到三棱錐,則三棱錐體積的最大值為__________;當(dāng)三棱錐體積最大時(shí),其外接球的表面積的值為_______________.

查看答案和解析>>

同步練習(xí)冊(cè)答案