已知四棱錐的底面是等腰梯形,且分別是的中點(diǎn).
(1)求證:;
(2)求二面角的余弦值.
(1)通過建立空間直角坐標(biāo)系,利用EF與AO的方向向量的數(shù)量積等于0,即可證明垂直;
(2)利用兩個平面的法向量的夾角即可得到二面角的余弦值 .
【解析】
試題分析:證明:(1)分別是的中點(diǎn).
是的中位線,
由已知可知
(6)
(2)以所在直線為x軸,y軸,z軸,建系
由題設(shè),
設(shè)平面的法向量為
可得
平面的法向量為
設(shè)二面角為,
(14)
考點(diǎn):向量來求解角和證明垂直
點(diǎn)評:通過建立空間直角坐標(biāo)系,利用EF與AO的方向向量的數(shù)量積等于0證明垂直;利用兩個平面的法向量的夾角得到二面角的方法必須熟練掌握.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河南省衛(wèi)輝市高三2月月考數(shù)學(xué)理卷 題型:選擇題
下列命題中不正確命題的個數(shù)是( )
①經(jīng)過空間一點(diǎn)一定可作一平面與兩異面直線都平行;
②已知平面、,直線a、b,若,,則;
③有兩個側(cè)面垂直于底面的四棱柱為直四棱柱;
④四個側(cè)面兩兩全等的四棱柱為直四棱柱;
⑤底面是等邊三角形,側(cè)面都是等腰三角形的三棱錐是正三棱錐;
⑥底面是等邊三角形,∠APB=∠BPC=∠CPA,則三棱錐P-ABC是正三棱錐.
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江西師大附中2010屆高三第三次模擬考試數(shù)學(xué)(理) 題型:選擇題
下列命題中正確命題的個數(shù)是 ( 。
①經(jīng)過空間一點(diǎn)一定可作一平面與兩異面直線都平行;
②已知平面、,直線a、b,若,,則;
③有兩個側(cè)面垂直于底面的四棱柱為直四棱柱;
④四個側(cè)面兩兩全等的四棱柱為直四棱柱;
⑤底面是等邊三角形,側(cè)面都是等腰三角形的三棱錐是正三棱錐;
⑥底面是等邊三角形,∠APB=∠BPC=∠CPA,則三棱錐P-ABC是正三棱錐.
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年安徽省合肥一中高二(上)第一次段考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com