【題目】在直角梯形(如圖1),,為線段中點(diǎn).沿折起,使平面平面,得到幾何體(如圖2.

1)求證:平面;

2)求與平面所成角的正弦值.

【答案】1)證明見解析;(2

【解析】

1)通過計(jì)算結(jié)合勾股定理的逆定理可以證明,再根據(jù)面面垂直的性質(zhì)定理進(jìn)行證明即可;

2)法一、

的中點(diǎn)連接,根據(jù),結(jié)合三棱錐的體積公式進(jìn)行求解即可;

法二、

的中點(diǎn)連接,由題設(shè)可知為等腰直角三角形,所以,連接,因?yàn)?/span>分別為的中點(diǎn),所以,由(1)可知,故以所在直線為軸、軸、軸建立空間直角坐標(biāo)系,如圖所示.運(yùn)用向量法求解即可.

解:(1)由題設(shè)可知,

又∵平面平面,平面平面

.

2)法一、等體積法

的中點(diǎn)連接,由題設(shè)可知為等腰直角三角形,所以

到面的距離

所以.

法二、向量法

的中點(diǎn)連接,由題設(shè)可知為等腰直角三角形,所以,連接,因?yàn)?/span>分別為的中點(diǎn),所以,由(1)可知,故以所在直線為軸、軸、軸建立空間直角坐標(biāo)系,如圖所示.

,,

∴面的一個(gè)法向量

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD所在平面垂直直角梯形ABPE所在的平面于直線AB,且ABBP2ADAE1,AEAB,且AEBP.

1)求平面PCD與平面ABPE所成的二面角的余弦值;

2)在線段PD上是否存在一點(diǎn)N,使得直線BN與平面PCD所成角的正弦值等于?若存在,試確定點(diǎn)N的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)設(shè),證明:在區(qū)間內(nèi)存在唯一的零點(diǎn);

2)設(shè),若對任意,有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱柱中,的中點(diǎn),點(diǎn)在側(cè)棱上,平面

(1) 證明:的中點(diǎn);

(2) 設(shè),四邊形為邊長為4正方形,四邊形為矩形,且異面直線所成的角為,求該三棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著銀行業(yè)的不斷發(fā)展,市場競爭越來越激烈,顧客對銀行服務(wù)質(zhì)量的要求越來越高,銀行為了提高柜員員工的服務(wù)意識(shí),加強(qiáng)評價(jià)管理,工作中讓顧客對服務(wù)作出評價(jià),評價(jià)分為滿意、基本滿意、不滿意三種.某銀行為了比較顧客對男女柜員員工滿意度評價(jià)的差異,在下屬的四個(gè)分行中隨機(jī)抽出40人(男女各半)進(jìn)行分析比較.對40人一月中的顧客評價(jià)“不滿意”的次數(shù)進(jìn)行了統(tǒng)計(jì),按男、女分為兩組,再將每組柜員員工的月“不滿意”次數(shù)分為5組:,,,,得到如下頻數(shù)分布表.

分組

女柜員

2

3

8

5

2

男柜員

1

3

9

4

3

1)在答題卡所給的坐標(biāo)系中分別畫出男、女柜員員工的頻率分布直方圖;分別求出男、女柜員員工的月平均“不滿意”次數(shù)的估計(jì)值,試根據(jù)估計(jì)值比較男、女柜員員工的滿意度誰高?

2)在抽取的40名柜員員工中:從“不滿意”次數(shù)不少于20的員工中隨機(jī)抽取3人,并用X表示隨機(jī)抽取的3人中女柜員工的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論的單調(diào)性,并證明有且僅有兩個(gè)零點(diǎn);

(Ⅱ)設(shè)的一個(gè)零點(diǎn),證明曲線在點(diǎn)處的切線也是曲線的切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】端午假期即將到來,永輝超市舉辦濃情端午高考加油有獎(jiǎng)促銷活動(dòng),凡持高考準(zhǔn)考證考生及家長在端年節(jié)期間消費(fèi)每超過600元(含600元),均可抽獎(jiǎng)一次,抽獎(jiǎng)箱里有10個(gè)形狀、大小完全相同的小球(其中紅球有3個(gè),黑球有7個(gè)),抽獎(jiǎng)方案設(shè)置兩種,顧客自行選擇其中的一種方案.

方案一:

從抽獎(jiǎng)箱中,一次性摸出3個(gè)球,其中獎(jiǎng)規(guī)則為:若摸到3個(gè)紅球,享受免單優(yōu)惠;若摸出2個(gè)紅球則打6折,若摸出1個(gè)紅球,則打7折;若沒摸出紅球,則不打折.

方案二:

從抽獎(jiǎng)箱中,有放回每次摸取1球,連摸3次,每摸到1次紅球,立減200.每次摸取1球,連摸3次,每摸到1

1)若小南、小開均分別消費(fèi)了600元,且均選擇抽獎(jiǎng)方案一,試求他們均享受免單優(yōu)惠的概率;

2)若小杰消費(fèi)恰好滿1000元,試比較說明小杰選擇哪一種抽獎(jiǎng)方案更合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】東西向的鐵路上有兩個(gè)道口、,鐵路兩側(cè)的公路分布如圖,位于的南偏西,且位于的南偏東方向,位于的正北方向,,處一輛救護(hù)車欲通過道口前往處的醫(yī)院送病人,發(fā)現(xiàn)北偏東方向的處(火車頭位置)有一列火車自東向西駛來,若火車通過每個(gè)道口都需要分鐘,救護(hù)車和火車的速度均為.

1)判斷救護(hù)車通過道口是否會(huì)受火車影響,并說明理由;

2)為了盡快將病人送到醫(yī)院,救護(hù)車應(yīng)選擇中的哪個(gè)道口?通過計(jì)算說明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的三個(gè)內(nèi)角,所對的邊分別為,設(shè),.

1)若,求的夾角;

2)若,求周長的最大值.

查看答案和解析>>

同步練習(xí)冊答案