【題目】已知點(diǎn)為拋物線的焦點(diǎn),過點(diǎn)任作兩條互相垂直的直線,分別交拋物線,,四點(diǎn),分別為的中點(diǎn).

1)求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo);

2)設(shè)直線交拋物線,兩點(diǎn),試求的最小值.

【答案】(1)證明見解析,直線過定點(diǎn)(2)的最小值為.

【解析】

1)設(shè),顯然直線,的斜率是存在的,設(shè)直線的方程為,代入可得,可得出的中點(diǎn)坐標(biāo)為,再根據(jù),得的中點(diǎn)坐標(biāo)為,再令,

得出直線恒過點(diǎn),驗(yàn)證,得,三點(diǎn)共線,從而直線過的定點(diǎn);

2))由(1)設(shè)直線的方程為,代入可得,再設(shè),,得韋達(dá)定理,,表示出,由二次函數(shù)得出線段的最小值.

1)設(shè),,

直線的方程為,代入可得,

,故,

的中點(diǎn)坐標(biāo)為

,得,所以的中點(diǎn)坐標(biāo)為

,

此時(shí),故直線過點(diǎn),

當(dāng)時(shí),

所以,,三點(diǎn)共線,

所以直線過定點(diǎn)

2)設(shè),,直線的方程為

代入可得,則,

(當(dāng)時(shí),取等號).

,當(dāng)及直線垂直軸時(shí),取得最小值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某動漫影視制作公司長期堅(jiān)持文化自信,不斷挖掘中華優(yōu)秀傳統(tǒng)文化中的動漫題材,創(chuàng)作出一批又一批的優(yōu)秀動漫影視作品,獲得市場和廣大觀眾的一致好評,同時(shí)也為公司贏得豐厚的利潤.該公司2013年至2019年的年利潤關(guān)于年份代號的統(tǒng)計(jì)數(shù)據(jù)如下表(已知該公司的年利潤與年份代號線性相關(guān)):

年份

2013

2014

2015

2016

2017

2018

2019

年份代號

1

2

3

4

5

6

7

年利潤 (單位:億元)

(Ⅰ)求關(guān)于的線性回歸方程,并預(yù)測該公司2020(年份代號記為)的年利潤;

(Ⅱ)當(dāng)統(tǒng)計(jì)表中某年年利潤的實(shí)際值大于由中線性回歸方程計(jì)算出該年利潤的估計(jì)值時(shí),稱該年為級利潤年,否則稱為級利潤年.中預(yù)測的該公司2020年的年利潤視作該年利潤的實(shí)際值,現(xiàn)從2015年至2020年這年中隨機(jī)抽取年,求恰有年為級利潤年的概率.

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程是為參數(shù),),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程是,等邊的頂點(diǎn)都在上,且點(diǎn),,按照逆時(shí)針方向排列,點(diǎn)的極坐標(biāo)為.

(Ⅰ)求點(diǎn),的直角坐標(biāo);

(Ⅱ)設(shè)上任意一點(diǎn),求點(diǎn)到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(1)求的單調(diào)區(qū)間;

(2)當(dāng)時(shí),求證:對于,恒成立;

(3)若存在,使得當(dāng)時(shí),恒有成立,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《周髀算經(jīng)》中給出了:冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二節(jié)氣的日影長依次成等差數(shù)列的結(jié)論.已知某地立春與雨水兩個節(jié)氣的日影長分別為尺和尺,現(xiàn)在從該地日影長小于尺的節(jié)氣中隨機(jī)抽取個節(jié)氣進(jìn)行日影長情況統(tǒng)計(jì),則所選取這個節(jié)氣中恰好有個節(jié)氣的日影長小于尺的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,的中點(diǎn).

1)證明:平面平面;

2)求平面與平面所成的二面角大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)寫出直線的極坐標(biāo)方程與曲線的直角坐標(biāo)方程;

2)已知與直線平行的直線過點(diǎn),且與曲線交于兩點(diǎn),試求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在空間幾何體中,平面平面都是邊長為2的等邊三角形,,點(diǎn)在平面上的射影在的平分線上,已知和平面所成角為.

(1)求證:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有三個極值點(diǎn),

(1)求實(shí)數(shù)的取值范圍;

(2)求證:.

查看答案和解析>>

同步練習(xí)冊答案