一盒中共裝有除顏色外其余均相同的小球12個,其中5個紅球、4個黑球、2個白球、1個綠球.從中隨機取出1個球,求:

(1)取出1球是紅球或黑球的概率;

(2)取出1球是紅球或黑球或白球的概率.

 

(1) (2)

【解析】記事件A1={任取1球為紅球},A2={任取1球為黑球},A3={任取1球為白球},A4={任取1球為綠球},則P(A1)=,P(A2)=,P(A3)=,P(A4)=.據(jù)題意知事件A1,A2,A3,A4彼此互斥,由互斥事件的概率公式,得

(1)取出1球是紅球或黑球的概率為

P(A1∪A2)=P(A1)+P(A2)=.

(2)取出1球是紅球或黑球或白球的概率為

方法一:P(A1∪A2∪A3)=P(A1)+P(A2)+P(A3)=.

方法二:P(A1∪A2∪A3)=1-P(A4)=1-.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-10導(dǎo)數(shù)的概念及運算(解析版) 題型:選擇題

定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),已知f(x+1)是偶函數(shù),(x-1)f′(x)<0.若x1<x2,且x1+x2>2,則f(x1)與f(x2)的大小關(guān)系是(  )

A.f(x1)<f(x2) B.f(x1)=f(x2)

C.f(x1)>f(x2) D.不確定

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-6幾何概型(解析版) 題型:填空題

若不等式組表示的平面區(qū)域為M,x2+y2≤1所表示的平面區(qū)域為N,現(xiàn)隨機向區(qū)域M內(nèi)拋一粒豆子,則豆子落在區(qū)域N內(nèi)的概率為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-5古典概型(解析版) 題型:填空題

從1到10這十個自然數(shù)中隨機取三個數(shù),則其中一個數(shù)是另兩個數(shù)之和的概率是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-5古典概型(解析版) 題型:選擇題

如圖所示方格,在每一個方格中填入一個數(shù)字,數(shù)字可以是1,2,3,4中的任何一個,允許重復(fù).則填入A方格的數(shù)字大于B方格的數(shù)字的概率為(  )

A

 

 

B

 

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-4隨機事件的概率(解析版) 題型:選擇題

設(shè)集合A={1,2},B={1,2,3},分別從集合A和B中隨機取一個數(shù)a和b,確定平面上的一個點P(a,b),記“點P(a,b)落在直線x+y=n上”為事件Cn(2≤n≤5,n∈N),若事件Cn的概率最大,則n的所有可能值為(  )

A.3 B.4 C.2和5 D.3和4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-3二項式定理(解析版) 題型:解答題

已知(+x2)2n的展開式的二項式系數(shù)和比(3x-1)n的展開式的二項式系數(shù)和大992,求(2x-)2n的展開式中:

(1)二項式系數(shù)最大的項;

(2)系數(shù)的絕對值最大的項.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-2排列與組合(解析版) 題型:選擇題

某小區(qū)有排成一排的7個車位,現(xiàn)有3輛不同型號的車需要停放,如果要求剩余的4個車位連在一起,那么不同的停放方法的種數(shù)為(  )

A.8 B.16 C.24 D.32

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):1-1集合的概念與運算(解析版) 題型:選擇題

如圖,已知R是實數(shù)集,集合A={x|(x-1)>0},B={x|<0},則陰影部分表示的集合是(  )

A.[0,1] B.[0,1) C.(0,1) D.(0,1]

 

查看答案和解析>>

同步練習(xí)冊答案