將參數(shù)方程
x=2+cosθ
y=1-sinθ
(θ是參數(shù))化為普通方程為
(x-2)2+(y-1)2=1
(x-2)2+(y-1)2=1
.(標(biāo)準(zhǔn)方程)
分析:通過移項(xiàng)后平方相加可消掉參數(shù)θ,從而得普通方程.
解答:解:
x=2+cosθ
y=1-sinθ
x-2=cosθ①
y-1=-sinθ②
,①2+②2得(x-2)2+(y-1)2=1,
所以普通方程為(x-2)2+(y-1)2=1,
故答案為:(x-2)2+(y-1)2=1.
點(diǎn)評(píng):本題考查參數(shù)方程與普通方程的互化,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)選做題(請(qǐng)考生在以下三個(gè)小題中任選一題作答,如果多做,則按所做的第一題評(píng)閱記分)
A.(選修4-4坐標(biāo)系與參數(shù)方程)將參數(shù)方程
x=e2+e-2
y=2(e2-e-2)
(e為參數(shù))化為普通方程是
 

B.(選修4-5 不等式選講)不等式|x-1|+|2x+3|>5的解集是
 

C.(選修4-1 幾何證明選講)如圖,在△ABC中,AD是高線,CE是中線,|DC|=|BE|,DG⊥CE于G,且|EC|=8,則|EG|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選做題:在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分.請(qǐng)?jiān)诖鹁砑堉付▍^(qū)域內(nèi)作答.解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,AD是∠BAC的平分線,⊙O過點(diǎn)A且與BC邊相切于點(diǎn)D,與AB、AC分別交于E,F(xiàn),求證:EF∥BC.

B.選修4-2:矩陣與變換
已知a,b∈R若矩陣M=
.
-1a
b3
.
所對(duì)應(yīng)的變換把直線l:2x-y=3變換為自身,求a,b的值.

C.選修4-4:坐標(biāo)系與參數(shù)方程
將參數(shù)方程
x=2(t+
1
t
)
y=4(t-
1
t
)
(t為參數(shù))化為普通方程.
D.選修4-5:不等式選講
已知a,b是正數(shù),求證:(a+
1
b
)(2b+
1
2a
)≥
9
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•江蘇一模)(選修4-4:坐標(biāo)系與參數(shù)方程)
已知直線l的參數(shù)方程
x=2-t
y=1+
3
t
(t為參數(shù)),圓C的極坐標(biāo)方程:ρ+2sinθ=0.
(1)將直線l的參數(shù)方程化為普通方程,圓C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)在圓C上求一點(diǎn)P,使得點(diǎn)P到直線l的距離最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選做題在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分.
請(qǐng)?jiān)诖鹁砑堉付▍^(qū)域內(nèi)作答.解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講如圖,AD是∠BAC的平分線,⊙O過點(diǎn)A且與BC邊相切于點(diǎn)D,與AB,AC分別交于E,F(xiàn),求證:EF∥BC.
B.選修4-2:矩陣與變換
已知a,b∈R,若矩陣M=[
-1
b
a
3
]所對(duì)應(yīng)的變換把直線l:2x-y=3變換為自身,求a,b的值.
C.選修4-4:坐標(biāo)系與參數(shù)方程將參數(shù)方程
x=2(t+
1
t
)
y=4(t-
1
t
)
t為參數(shù))化為普通方程.
D.選修4-5:已知a,b是正數(shù),求證(a+
1
b
)(2b+
1
2a
)≥92.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:鎮(zhèn)江一模 題型:解答題

(選修4-4:坐標(biāo)系與參數(shù)方程)
已知直線l的參數(shù)方程
x=2-t
y=1+
3
t
(t為參數(shù)),圓C的極坐標(biāo)方程:ρ+2sinθ=0.
(1)將直線l的參數(shù)方程化為普通方程,圓C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)在圓C上求一點(diǎn)P,使得點(diǎn)P到直線l的距離最。

查看答案和解析>>

同步練習(xí)冊(cè)答案