精英家教網 > 高中數學 > 題目詳情
設二次函數f(x)=x2+ax+a,方程f(x)-x=0的兩根x1和x2滿足0<x1<x2<1.求實數a的取值范圍.
分析:令g(x)=f(x)-x=x2+(a-1)x+a,由題設知
△=(a-1)2-4a>0
0<
1-a
2
<1
g(1)=1+a-1+a>0
g(0)=a>0
,由此能求出實數a的取值范圍.
解答:解:令g(x)=f(x)-x=x2+(a-1)x+a,
∵二次函數f(x)=x2+ax+a,方程f(x)-x=0的兩根x1和x2滿足0<x1<x2<1,
△=(a-1)2-4a>0
0<
1-a
2
<1
g(1)=1+a-1+a>0
g(0)=a>0
,
解得0<a<3-2
2

故所求實數a的取值范圍是(0,3-2
2
).
點評:本題考查實數的取值范圍的求法,解題時要認真審題,仔細解答,注意拋物線性質的合理運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設二次函數f(x)=ax2+bx+c滿足f(-1)=0,對于任意的實數x都有f(x)-x≥0,并且當x∈(0,2)時,f(x)≤(
x+12
)
2

(1)求f(1)的值;
(2)求證:a>0,c>0;
(3)當x∈(-1,1)時,函數g(x)=f(x)-mx,m∈R是單調的,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設二次函數f(x)=ax2+bx+c(a>0),方程f(x)-x=0的兩個根x1、x2滿足0<x1<x2
1
a
,且函數f(x)的圖象關于直線x=x0對稱,則有( 。
A、x0
x1
2
B、x0
x1
2
C、x0
x1
2
D、x0
x1
2

查看答案和解析>>

科目:高中數學 來源: 題型:

設二次函數f(x)=ax2+(2b+1)x-a-2(a,b∈R,a≠0)在[3,4]上至少有一個零點,求a2+b2的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設二次函數f(x)=ax2+bx+c(a≠0)滿足:當x=1時,f(x)取得最小值1,且f(0)=
32

(1)求a、b、c的值;
(2)是否存在實數m,n,使x∈[m,n]時,函數的值域也是[m,n]?若存在,則求出這樣的實數m,n;若不存在,則說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

設二次函數f(x)=x2+x+a(a>0),若f(m)<0,則有( 。

查看答案和解析>>

同步練習冊答案