【題目】如圖,在直三棱柱ABCA1B1C1中,AB=AC=,BC=AA1=2,O,M分別為BC,AA1的中點.
(1)求證:OM∥平面CB1A1;
(2)求點M到平面CB1A1的距離.
【答案】(1)證明見解析(2)
【解析】
(1)連接BC1,交CB1于點N,則N為CB1的中點,連接ON,可得ON∥BB1,再結合ON=MA1,可得四邊形ONA1M為平行四邊形,則有OM∥NA1,再由線面平行的判定可證得OM∥平面CB1A1;
(2)由OM∥平面CB1A1,可知點M到平面CB1A1的距離等于點O到平面CB1A1的距離,然后利用等積法可求解.
(1)如圖,連接BC1,交CB1于點N,連接A1N,ON.
則N為CB1的中點,
又∵O為BC的中點,
∴ON∥BB1,且ON=BB1,
又∵M為AA1的中點,
∴MA1∥BB1,且MA1=BB1,
∴ON∥MA1且ON=MA1,
∴四邊形ONA1M為平行四邊形,
∴OM∥NA1,
又∵NA1平面CB1A1,OM平面CB1A1,
∴OM∥平面CB1A1.
(2)如圖,連接AO,OB1,AB1.
∵AB=AC,O為BC的中點,∴AO⊥BC,
又∵直三棱柱ABCA1B1C1中,平面CBB1C1⊥平面ABC,
∴AO⊥平面CBB1C1.
由(1)可知OM∥平面CB1A1,
∴點M到平面CB1A1的距離等于點O到平面CB1A1的距離,設其為d,
在直三棱柱ABCA1B1C1中,由AB=AC=,BC=AA1=2可得,AO=1,A1B1=,A1C=,B1C=,
∴△CB1A1是直角三角形,且.
由得,
故d=.即點M到平面CB1A1的距離為.
科目:高中數(shù)學 來源: 題型:
【題目】有限個元素組成的集合,,記集合中的元素個數(shù)為,即.定義,集合中的元素個數(shù)記為,當時,稱集合具有性質.
(1),,判斷集合,是否具有性質,并說明理由;
(2)設集合,且(),若集合具有性質,求的最大值;
(3)設集合,其中數(shù)列為等比數(shù)列,()且公比為有理數(shù),判斷集合是否具有性質并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,要利用一半徑為的圓形紙片制作三棱錐形包裝盒.已知該紙片的圓心為,先以為中心作邊長為(單位:)的等邊三角形,再分別在圓上取三個點,,,使,,分別是以,,為底邊的等腰三角形.沿虛線剪開后,分別以,,為折痕折起,,,使得,,重合于點,即可得到正三棱錐.
(1)若三棱錐是正四面體,求的值;
(2)求三棱錐的體積的最大值,并指出相應的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn,a1=1,an>0,Sn2=an+12﹣λSn+1,其中λ為常數(shù).
(1)證明:Sn+1=2Sn+λ;
(2)是否存在實數(shù)λ,使得數(shù)列{an}為等比數(shù)列,若存在,求出λ;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三棱錐(如圖一)的平面展開圖(如圖二)中,四邊形為邊長等于的正方形,和均為正三角形,在三棱錐中:
(I)證明:平面平面;
(Ⅱ)若點在棱上運動,當直線與平面所成的角最大時,求二面角的余弦值.
圖一
圖二
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知離心率為的橢圓的左頂點為,左焦點為,及點,且、、成等比數(shù)列.
(1)求橢圓的方程;
(2)斜率不為的動直線過點且與橢圓相交于、兩點,記,線段上的點滿足,試求(為坐標原點)面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,圓,如圖,分別交軸正半軸于點.射線分別交于點,動點滿足直線與軸垂直,直線與軸垂直.
(1)求動點的軌跡的方程;
(2)過點作直線交曲線與點,射線與點,且交曲線于點.問:的值是否是定值?如果是定值,請求出該定值;如果不是定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)有小學21所,中學14所,大學7所,現(xiàn)采用分層抽樣的方法從這些學校中抽取6所學校對學生進行視力調查,若從抽取的6所學校中隨機抽取2所學校做進一步數(shù)據(jù)分析.
(1)求應從小學、中學、大學中分別抽取的學校數(shù)目;
(2)求抽取的6所學校中的2所學校均為小學的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com