已知數(shù)列{an}為等差數(shù)列,a1+a3+a5=15,a4=7,則s6的值為( 。
A、30B、35C、36D、24
分析:利用等差中項(xiàng)的性質(zhì)求得a3的值,進(jìn)而利用a1+a6=a3+a4求得a1+a6的值,代入等差數(shù)列的求和公式中求得答案.
解答:解:a1+a3+a5=3a3=15,
∴a3=5
∴a1+a6=a3+a4=12
∴s6=
(a1+a6
2
×6=36
故選C
點(diǎn)評(píng):本題主要考查了等差數(shù)列的性質(zhì).特別是等差中項(xiàng)的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:在數(shù)列{an}中,an>0且an≠1,若
a
an+1
n
為定值,則稱(chēng)數(shù)列{an}為“等冪數(shù)列”.已知數(shù)列{an}為“等冪數(shù)列”,且a1=2,a2=4,Sn為數(shù)列{an}的前n項(xiàng)和,則S2009=( 。
A、6026B、6024
C、2D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:在數(shù)列{an}中,an>0且an≠1,若anan+1為定值,則稱(chēng)數(shù)列{an}為“等冪數(shù)列”.已知數(shù)列{an}為“等冪數(shù)列”,且a1=2,a2=4,Sn為數(shù)列{an}的前n項(xiàng)和,則S2013等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:在數(shù)列{an}中,an>0,且an≠1,若anan+1為定值,則稱(chēng)數(shù)列{an}為“等冪數(shù)列”.已知數(shù)列{an}為“等冪數(shù)列”,且a1=2,a2=4,Sn為數(shù)列{an}的前n項(xiàng)和,則S2011等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出“等和數(shù)列”的定義:從第二項(xiàng)開(kāi)始,每一項(xiàng)與前一項(xiàng)的和都等于一個(gè)常數(shù),這樣的數(shù)列叫做“等和數(shù)列”,這個(gè)常數(shù)叫做“公和”.已知數(shù)列{an}為等和數(shù)列,公和為
1
2
,且a2=1,則a2009=( 。
A、-
1
2
B、
1
2
C、1
D、2008

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012--2013學(xué)年河南省高二上學(xué)期第一次考試數(shù)學(xué)試卷(解析版) 題型:選擇題

.定義:在數(shù)列{an}中,an>0且an≠1,若為定值,則稱(chēng)數(shù)列{an}為“等冪數(shù)列”.已知數(shù)列{an}為“等冪數(shù)列”,且a1=2,a2=4,Sn為數(shù)列{an}的前n項(xiàng)和,則S2009= (   )A.6026           B .6024               C.2                     D.4

 

查看答案和解析>>

同步練習(xí)冊(cè)答案