分析 (1)連結(jié)B1D1,通過證明A1C1⊥平面BB1D1N得出結(jié)論;
(2)以D為原點(diǎn)建立空間直角坐標(biāo)系,求出平面A1C1M的法向量$\overrightarrow{n}$和$\overrightarrow{B{B}_{1}}$的坐標(biāo),計(jì)算cos<$\overrightarrow{n}$,$\overrightarrow{B{B}_{1}}$>,則BB1和平面A1C1M所成角的余弦值為$\sqrt{1-co{s}^{2}<\overrightarrow{n},\overrightarrow{B{B}_{1}}>}$.
解答 證明:(1)∵四邊形A1B1C1D1是正方形,∴A1C1⊥B1D1,
∵BB1⊥平面A1B1C1D1,A1C1?平面A1B1C1D1,
∴BB1⊥A1C1,
又B1D1?平面BB1D1N,BB1?平面BB1D1N,BB1∩B1D1=B1,
∴A1C1⊥平面BB1D1N,
∵BN?平面BB1D1N,
∴BN⊥A1C1.
(2)以D為原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,
設(shè)正方體邊長(zhǎng)為1,則A1(1,0,1),B(1,1,0),M(0,$\frac{1}{2}$,0),C1(0,1,1),B1(1,1,1).
∴$\overrightarrow{{A}_{1}{C}_{1}}$=(-1,1,0),$\overrightarrow{{A}_{1}M}$=(-1,$\frac{1}{2}$,-1),$\overrightarrow{B{B}_{1}}$=(0,0,1).
設(shè)平面A1C1M的法向量為$\overrightarrow{n}$=(x,y,z),則$\overrightarrow{n}•\overrightarrow{{A}_{1}{C}_{1}}$=0,$\overrightarrow{n}•\overrightarrow{{A}_{1}M}$=0,
即$\left\{\begin{array}{l}{-x+y=0}\\{-x+\frac{1}{2}y-z=0}\end{array}\right.$,令x=1得$\overrightarrow{n}$=(1,1,-$\frac{1}{2}$).
∴$\overrightarrow{n}•\overrightarrow{B{B}_{1}}$=-$\frac{1}{2}$,|$\overrightarrow{n}$|=$\frac{3}{2}$,|$\overrightarrow{B{B}_{1}}$|=1.
∴cos<$\overrightarrow{n},\overrightarrow{B{B}_{1}}$>=$\frac{\overrightarrow{n}•\overrightarrow{B{B}_{1}}}{|\overrightarrow{n}||\overrightarrow{B{B}_{1}}|}$=-$\frac{1}{3}$.
∴BB1和平面A1C1M所成角的余弦值為$\sqrt{1-(\frac{1}{3})^{2}}$=$\frac{2\sqrt{2}}{3}$.
點(diǎn)評(píng) 本題考查了線面垂直的判定與性質(zhì),線面角的計(jì)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com