已知數(shù)列{an}滿足a1=2,且anan+1+an+1-2an=0(n∈N+).
(1)求a2、a3、a4的值;
(2)猜想數(shù)列{an}的通項公式,并用數(shù)學歸納法加以證明.
分析:(1)由題意可得 an+1=
2an
an+1
,又a1=2,可求得a2,再由a2的值求 a3,再由a3 的值求出a4的值.
(2)猜想an=
2n
2n-1
,檢驗n=1時等式成立,假設n=k時命題成立,證明當n=k+1時命題也成立.
解答:解:(1)由題得an+1=
2an
an+1
,又a1=2,則a2=
2a1
a1+1
=
4
3
a3=
2a2
a2+1
=
8
7
,
a4=
2a3
a3+1
=
16
15

(2)猜想an=
2n
2n-1
.             
證明:①當n=1時,
21
21-1
=2=a1
,故命題成立.
②假設當n=k時命題成立,即ak=
2k
2k-1

則當n=k+1時,ak+1=
2ak
ak+1
=
2•
2k
2k-1
2k
2k-1
+1
=
2k+1
2k+2k-1
=
2k+1
2k+1-1

故命題也成立.                     
綜上,對一切n∈N+都有an=
2n
2n-1
成立.
點評:本題考查數(shù)列的遞推公式,用數(shù)學歸納法證明等式成立.證明當n=k+1時命題也成立,是解題的難點.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數(shù)列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數(shù)列bn-1是等比數(shù)列;
(2)求數(shù)列{anbn}的前n項和Sn
(3)數(shù)列{an-bn}是否存在最大項,如果存在求出,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項公式
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)證明:對于一切正整數(shù)n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an;
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習冊答案