矩形ABCD的四個(gè)頂點(diǎn)的坐標(biāo)分別為A(-2,1),B(2,1),C(2,-1),D(-2,-1),過(guò)原點(diǎn)且互相垂直的兩條直線分別與矩形的邊相交于E、F、G、H四點(diǎn),則四邊形EGFH的面積的最小值為______,最大值為______.
設(shè)過(guò)原點(diǎn)且互相垂直的兩條直線分別為 y=kx,和 y=-
1
k
x,(不妨設(shè)k>0)由題意得,
則 E (
1
k
,1),F(xiàn) (-
1
k
,-1),G(-k,1),H(k,-1),
由兩點(diǎn)間的距離公式得 EF=
(
2
k
)
2
+22
=2
1+
1
k2
,GH=
(2K)2+4
=2
1+k2
,
四邊形EGFH的面積為 S=
1
2
•EF•GH=2
2+k2+
1
k2
=2
(k+
1
k
)
2
=2|k+
1
k
|=2(k+
1
k
).
根據(jù)E、G 兩點(diǎn)都在線段AB上,可得-2≤
1
k
≤2,且-2≤-k≤2,∴
1
2
≤k≤2.
又函數(shù) S=2(k+
1
k
) 在[
1
2
,1]上是減函數(shù),在[1,2]上是增函數(shù),故 k=1時(shí),S有最小值為4.
當(dāng) k=
1
2
時(shí),S=5; 當(dāng) k=2時(shí),S=5. 當(dāng) k=0時(shí),S=4.
綜上,S的最小值等于4,最大值等于 5,
故答案為 4,5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)P的軌跡是曲線C,滿足:點(diǎn)P到F(-2,0)的距離與它到直線l:x=-4的距離之比是常數(shù),又點(diǎn)M(2,-
2
)
在曲線C上,點(diǎn)N(-1,1)在曲線C的內(nèi)部.
(1)求曲線C的方程;
(2)|PN|+
2
|PF|
的最小值,并求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

與y軸相切且和半圓x2+y2=4(0≤x≤2)內(nèi)切的動(dòng)圓圓心的軌跡方程是( 。
A.y2=4(x+1)(0<x≤1)B.y2=4(x-1)(0<x≤1)
C.y2=-4(x-1)(0<x≤1)D.y2=-2(x-1)(0<x≤1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知l1和l2是平面內(nèi)互相垂直的兩條直線,它們的交點(diǎn)為A,異于點(diǎn)A的兩動(dòng)點(diǎn)B、C分別在l1、l2上,且BC=3,則過(guò)A、B、C三點(diǎn)的動(dòng)圓所形成的圖形面積為( 。
A.6πB.9πC.
2
D.
9
4
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB為半圓的直徑,P為半圓上一點(diǎn),|AB|=10,∠PAB=a,且sina=
4
5
,建立適當(dāng)?shù)淖鴺?biāo)系.
(1)求A、B為焦點(diǎn)且過(guò)P點(diǎn)的橢圓的標(biāo)準(zhǔn)方程.
(2)動(dòng)圓M過(guò)點(diǎn)A,且與以B為圓心,以2
5
為半徑的圓相外切,求動(dòng)圓圓心M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)A為圓(x-1)2+y2=1上的動(dòng)點(diǎn),PA是圓的切線且|PA|=1,則P點(diǎn)的軌跡方程( 。
A.(x-1)2+y2=4B.(x-1)2+y2=2C.y2=2xD.y2=-2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知P是曲線y=2x2-1上的動(dòng)點(diǎn),定點(diǎn)A(0,-1),且點(diǎn)P不同于點(diǎn)A,若M點(diǎn)滿足
PM
=2
MA
,求點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)F1,F(xiàn)2分別是橢圓+y2=1的左、右焦點(diǎn),P是第一象限內(nèi)該橢圓上的一點(diǎn),且PF1⊥PF2,則點(diǎn)P的橫坐標(biāo)為(  )
A.1B.C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C的兩焦點(diǎn)分別為,長(zhǎng)軸長(zhǎng)為6,
⑴求橢圓C的標(biāo)準(zhǔn)方程;
⑵已知過(guò)點(diǎn)(0,2)且斜率為1的直線交橢圓C于A 、B兩點(diǎn),求線段AB的長(zhǎng)度。.

查看答案和解析>>

同步練習(xí)冊(cè)答案