奇函數(shù)f(x)在(0,+∞)上的解析式是f(x)=x(1-x),則在(-∞,0)上f(x)的函數(shù)解析式是
x(1+x)
x(1+x)
分析:根據(jù)已知,觀察所求解析式與已知解析式所在區(qū)間關(guān)系,再利用奇偶性求解所求解析式.
解答:解:x∈(-∞,0)時(shí),-x∈(0,+∞),
因?yàn)閒(x)在(0,+∞)上的解析式是f(x)=x(1-x),
所以f(-x)=-x(1+x),
因?yàn)楹瘮?shù)f(x)是奇函數(shù),所以f(-x)=-f(x)=-x(1+x),
所以f(x)=x(1+x),
故答案為x(1+x).
點(diǎn)評(píng):本題考察利用函數(shù)性質(zhì)求函數(shù)解析式,主要利用所求解析式與已知解析式所在區(qū)間是對(duì)稱的來(lái)求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在(-∞,0)∪(0,+∞)上的奇函數(shù)f(x)在(0,+∞)上為增函數(shù),當(dāng)x>0時(shí),f(x)的圖象如圖所示,則不等式x[f(x)-f(-x)]<0的解集是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義{x∈R|x≠0}的奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(2)=0,則不等式
f(x)-f(-x)
x-1
<0
的解集為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(1)=0,則不等式(x-1)f(x-1)<0的解集為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下面四個(gè)命題:
①已知函數(shù)f(x)=
x
 ,x≥0 
-x
 ,x<0 
且f(a)+f(4)=4,那么a=-4;
②一組數(shù)據(jù)18,21,19,a,22的平均數(shù)是20,那么這組數(shù)據(jù)的方差是2;
③已知奇函數(shù)f(x)在(0,+∞)為增函數(shù),且f(-1)=0,則不等式f(x)<0的解集{x|x<-1};
④在極坐標(biāo)系中,圓ρ=-4cosθ的圓心的直角坐標(biāo)是(-2,0).
其中正確的是
②,④
②,④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(-2)=0則不等式
f(-x)x
>0
的解集為
(-2,0)∪(0,2)
(-2,0)∪(0,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案