(本小題滿(mǎn)分12分)已知函數(shù)在定義域上為增函數(shù),且滿(mǎn)足

(1)求的值           (2)解不等式

解:(1)  ……4分
(2)
而函數(shù)f(x)是定義在上為增函數(shù)
         即原不等式的解集為 ……12分

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,現(xiàn)有一塊矩形空地,要在這塊空地上開(kāi)辟一個(gè)內(nèi)接四邊形為綠地,使其四個(gè)頂點(diǎn)分別落在矩形的四條邊上,已知,,且,設(shè),綠地面積為.
1、寫(xiě)出關(guān)于的函數(shù)關(guān)系式,并指出其定義域;
2、當(dāng)為何值時(shí),綠地面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

提高過(guò)江大橋的車(chē)輛通行能力可改善整個(gè)城市的交通狀況.在一般情況下,大橋上的車(chē)流速度v(單位:千米/小時(shí))是車(chē)流密度x(單位:輛/千米)的函數(shù).當(dāng)橋上的車(chē)流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車(chē)流速度為0;當(dāng)車(chē)流密度不超過(guò)20輛/千米時(shí),車(chē)流速度為60千米/小時(shí).研究表明:當(dāng)20≤x≤200時(shí),車(chē)流速度v是車(chē)流密度x的一次函數(shù).當(dāng)0≤x≤200時(shí),求函數(shù)v(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分14分)已知函數(shù)有如下性質(zhì):如果常數(shù)>0,那么該
函數(shù)在0,上是減函數(shù),在,+∞上是增函數(shù).
(1)如果函數(shù)>0)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d8/1/skgw31.gif" style="vertical-align:middle;" />6,+∞,求的值;
(2)研究函數(shù)(常數(shù)>0)在定義域內(nèi)的單調(diào)性,并說(shuō)明理由;
(3)對(duì)函數(shù)(常數(shù)>0)作出推廣,使它們都是你所推廣的
函數(shù)的特例.
(4)(理科生做)研究推廣后的函數(shù)的單調(diào)性(只須寫(xiě)出結(jié)論,不必證明),并求函數(shù)是正整數(shù))在區(qū)間[,2]上的最大值和最小值(可利用你
的研究結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題12分) 二次函數(shù)f(x)滿(mǎn)足且f(0)=1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)在區(qū)間上求y= f(x)的值域。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(13分)已知函數(shù)f(x)=ax+(x≠0,常數(shù)a∈R).
(1)討論函數(shù)f(x)的奇偶性,并說(shuō)明理由;
(2)若函數(shù)f(x)在x∈[3,+∞)上為增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)已知奇函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/22/2/dwdee1.gif" style="vertical-align:middle;" />,且上是增函數(shù), 是否存在實(shí)數(shù)使得, 對(duì)一切
都成立?若存在,求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知函數(shù)f(x)是偶函數(shù),在上導(dǎo)數(shù)>0恒成立,則下列不等式成立的是(   ).

A.f(-3)<f(-1)<f(2)B.f(-1)<f(2)<f(-3)
C.f(2)<f(-3)<f(-1)D.f(2)<f(-1)<f(-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

函數(shù)定義在上的非負(fù)可導(dǎo)函數(shù),且滿(mǎn)足,對(duì)任意正數(shù), 若,則必有(      ).

A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案