分析:(1)求導(dǎo)函數(shù),確定函數(shù)的極值,再與端點(diǎn)函數(shù)值比較,即可確定函數(shù)的最值;
(2)利用對數(shù)的運(yùn)算法則,適當(dāng)變形化簡,即可求得結(jié)論.
解答:解:(1)求導(dǎo)函數(shù)可得:f'(x)=3-3x
2=3(1-x)(1+x)
令f'(x)=0得:x=1或x=-1
令f'(x)>0,可得-1<x<1;令f'(x)<0,可得x<-1或x>1;
所以x=1或x=-1是函數(shù)f(x)在
[-,3]上的兩個極值點(diǎn),且f(1)=2,f(-1)=-2
又f(x)在區(qū)間端點(diǎn)的取值為
f(-)=0,f(3)=-18比較以上函數(shù)值可得f(x)
max=2,f(x)
min=-18
(2)原式=
| lg5(3lg2+3)+3lg22-lg6+lg6-2 |
| |
=3lg2(lg5+lg2)+3lg5-2=3(lg5+lg2)-2=1
點(diǎn)評:本題考查利用導(dǎo)數(shù)知識,解決函數(shù)最值問題,解題的關(guān)鍵是確定函數(shù)的極值,再與端點(diǎn)函數(shù)值比較.