設(shè)x∈,且,求x的最大值.

答案:
解析:

  解 ∵x>0,

  又


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)設(shè)x∈R,函數(shù)f(x)=cos(ωx+?)(ω>0,-
π
2
<?<0
)的最小正周期為π,且f(
π
4
)=
3
2

(Ⅰ)求ω和?的值;
(Ⅱ)在給定坐標(biāo)系中作出函數(shù)f(x)在[0,π]上的圖象;
(Ⅲ)若f(x)>
2
2
,求x
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)是定義在D上的函數(shù),若對(duì)任何實(shí)數(shù)α∈(0,1)以及D中的任意兩數(shù)x1,x2,恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),則稱f(x)為定義在D上的C函數(shù).
(Ⅰ)試判斷函數(shù)f1(x)=x2,f2(x)=
1x
(x<0)
中哪些是各自定義域上的C函數(shù),并說(shuō)明理由;
(Ⅱ)已知f(x)是R上的C函數(shù),m是給定的正整數(shù),設(shè)an=f(n),n=0,1,2,…,m,且a0=0,am=2m,記Sf=a1+a2+…+am.對(duì)于滿足條件的任意函數(shù)f(x),試求Sf的最大值;
(Ⅲ)若(Ⅱ)中Sf的最大值記為h(m),且h(1)+h(2)+…+h(m)≤a對(duì)任意給定的正整數(shù)m恒成立,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,已知圓C:(x+1)2+y2=8,定點(diǎn)A(1,0),M為圓上一動(dòng)點(diǎn),點(diǎn)P在AM上,點(diǎn)N在CM上,且滿足AM=2AP,NP⊥AM,點(diǎn)N的軌跡為曲線E.
(1)求曲線E的方程;
(2)若過(guò)定點(diǎn)F(0,2)的直線l交曲線E于不同的兩點(diǎn)G、H(點(diǎn)G在點(diǎn)F、H之間),且滿足FG=
1
2
FH
,求直線l的方程;
(3)設(shè)曲線E的左右焦點(diǎn)為F1,F(xiàn)2,過(guò)F1的直線交曲線于Q,S兩點(diǎn),過(guò)F2的直線交曲線于R,T兩點(diǎn),且QS⊥RT,垂足為W;
(。┰O(shè)W(x0,y0),證明:
x
2
0
2
+
y
2
0
<1
;
(ⅱ)求四邊形QRST的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

仔細(xì)閱讀下面問(wèn)題的解法:

    設(shè)A=[0, 1],若不等式21-x-a>0在A上有解,求實(shí)數(shù)a的取值范圍。

    解:由已知可得  a 21-x

        令f(x)= 21-x ,∵不等式a <21-x在A上有解,

        ∴a <f(x)在A上的最大值.

        又f(x)在[0,1]上單調(diào)遞減,f(x)max =f(0)=2.  ∴實(shí)數(shù)a的取值范圍為a<2.

研究學(xué)習(xí)以上問(wèn)題的解法,請(qǐng)解決下面的問(wèn)題:

(1)已知函數(shù)f(x)=x2+2x+3(-2≤x≤-1),求f(x)的反函數(shù)及反函數(shù)的定義域A;

(2)對(duì)于(1)中的A,設(shè)g(x)=,x∈A,試判斷g(x)的單調(diào)性(寫(xiě)明理由,不必證明);

(3)若B ={x|>2x+a–5},且對(duì)于(1)中的A,A∩B≠F,求實(shí)數(shù)a的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案