(本小題滿分14分)
如圖,設是圓上的動點,點D是軸上的投影,M為D上一點,且
(Ⅰ)當的在圓上運動時,求點M的軌跡C的方程;
(Ⅱ)求過點(3,0)且斜率為的直線被C所截線段的長度。
(Ⅰ);(Ⅱ)。

試題分析:(Ⅰ)設M的坐標為的坐標為 
由已知得在圓上,即C的方程為(6分 )
(Ⅱ)過點(3,0)且斜率為 的直線方程為,設直線與C的交點為
,將直線方程代入C的方程,得
。
線段AB的長度為
                     (12分)
注:求AB長度時,利用韋達定理或弦長公式求得正確結果,同樣給分。
點評:求曲線的軌跡方程是常見題型,其常采用的方法有直接法、定義法、相關點法、參數(shù)法. 我們這里用到的是相關點法,所謂相關點法就是根據(jù)相關點所滿足的方程,通過轉換而求動點的軌跡方程. 不管應用哪種方法求軌跡方程,一定要注意軌跡的純粹性和完備性.要注意區(qū)別“軌跡”與“軌跡方程”是兩個不同的概念.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

是橢圓E: 的左右焦點,P在直線上一點,是底角為的等腰三角形,則橢圓E的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

拋物線的準線方程為               

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的兩焦點為,以為邊作正三角形,若橢圓恰好平分該正三角形的另兩邊,則橢圓的離心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
在直角坐標系中,點到兩點,的距離之和等于,設點的軌跡為。
(1)求曲線的方程;
(2)過點作兩條互相垂直的直線分別與曲線交于。
①以線段為直徑的圓過能否過坐標原點,若能求出此時的值,若不能說明理由;
②求四邊形面積的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已(12分)知橢圓的中心在坐標原點,離心率為,一個焦點是F(0,1).
(Ⅰ)求橢圓方程;
(Ⅱ)直線過點F交橢圓于A、B兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如果雙曲線過點P(6,) ,漸近線方程為,則此雙曲線的方程為  _.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

對于平面直角坐標系內的任意兩點,定義它們之間的一種“距離”:.給出下列三個命題:
①若點C在線段AB上,則;
②在中,若∠C=90°,則
③在中,
其中真命題的個數(shù)為(   )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知拋物線過點.(1)求拋物線的方程,并求其準線方程;
(2)是否存在平行于為坐標原點)的直線,使得直線與拋物線有公共點,且直線
距離等于?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案