定義域?yàn)閇a,b]的函數(shù)y=f(x)的圖象的兩個(gè)端點(diǎn)為A、B,M(x,y)是f(x)圖象上任意一點(diǎn),其中x=λa+(1-λ)b(0≤λ≤1),向量
ON
OA
+(1-λ)
OB
,其中O為坐標(biāo)原點(diǎn),若不等式|
MN
|≤k恒成立,則稱(chēng)函數(shù)f(x)在[a,b]上“k階線性近似”.若函數(shù)y=x+
1
x
在[1,2]上“k階線性近似”,則實(shí)數(shù)k的取值范圍為(  )
A、[
3
2
-
2
,+∞)
B、[
3
2
+
2
,+∞)
C、[0,+∞)
D、[1,+∞)
考點(diǎn):平面向量的綜合題
專(zhuān)題:平面向量及應(yīng)用
分析:先得出M、N橫坐標(biāo)相等,再將恒成立問(wèn)題轉(zhuǎn)化為求函數(shù)的最值問(wèn)題.
解答: 解:由題意,M、N橫坐標(biāo)相等,|
MN
|≤k恒成立,即|
MN
|max
≤k,
由N在AB線段上,得A(1,0),B(2,
5
2
),
∴直線AB方程為y=
1
2
(x+3)
|
MN
|
═|y1-y2|=|x+
1
x
-
1
2
(x+3)|=|
x
2
+
1
x
-
3
2
|,
x
2
+
1
x
≥2
x
2
×
1
x
=
2
,且
x
2
+
1
x
3
2
,
|
MN
|
=|
x
2
+
1
x
-
3
2
|=
3
2
-(
x
2
+
1
x
)≤
3
2
-
2
,
|
MN
|
的最大值為
3
2
-
2
,
∴k≥
3
2
-
2

故選A.
點(diǎn)評(píng):本題考查向量知識(shí)的運(yùn)用,考查基本不等式的運(yùn)用,解答的關(guān)鍵是將已知條件進(jìn)行轉(zhuǎn)化,同時(shí)應(yīng)注意恒成立問(wèn)題的處理策略.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等腰△ABC中,AB=AC,M為BC中點(diǎn),點(diǎn)D、E分別在邊AB、AC上,且AD=
1
2
DB,AE=3EC,若∠DME=90°,則cosA=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax3+
3
2
bx2(a,b∈R,a>b且a≠0)的圖象在(2,f(2))處的切線與x軸平行.
(1)試寫(xiě)出a與b的關(guān)系式;
(2)若函數(shù)y=f(x)在區(qū)間[b,a]上有最大值為a-b2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U={1,2,3,4,5,6,7,8,9},集合A={x|x2-4x+3=0},B={x|x=3a,a∈A},則集合∁M(A∪B)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>0,b>0,且a2+b2=1,則下列結(jié)論中正確的是
 
(填上所有正確結(jié)論的序號(hào))
①ab>
1
2
;
②a+b≤
2

1
a
+
1
b
≥4;
④(a+b)(
2
a
+
1
b
)≥3+2
2

⑤a2+ab+b2≥a+b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若集合A={0,1},集合B={0,-1},則A∪B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U={a1,a2,a3,a4},集合A是集合U的恰有兩個(gè)元素的子集,且滿(mǎn)足下列三個(gè)條件:
①若a1∈A,則a2∈A;
②若a3∉A,則a2∉A;
③若a3∈A,則a4∉A.
則集合A=
 
.(用列舉法表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:7lg2(
1
2
)lg
7
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若△ABC滿(mǎn)足acosA=bcosB,則△ABC為( 。┤切危
A、等腰B、等邊
C、等腰直角D、等腰或直角

查看答案和解析>>

同步練習(xí)冊(cè)答案