設(shè)函數(shù)數(shù)學(xué)公式,
(Ⅰ)當(dāng)f(x)取最小值時(shí),求x的集合;
(Ⅱ)寫出f(x)的單調(diào)遞增區(qū)間.

解:(Ⅰ)=sin2x+cos2x
=2sin(2x+),故當(dāng) 2x+=2kπ-,k∈z,即x=kπ-時(shí),k∈z,f(x)取最小值,
故x的集合為{x|x=kπ-,k∈z}.
(Ⅱ)由 kπ-≤2x+≤kπ+,k∈z,可得 kπ-≤x≤kπ+ z,
故f(x)的單調(diào)遞增區(qū)間為
分析:(Ⅰ)利用兩角和差的正弦公式化簡函數(shù)f(x)的解析式為2sin(2x+),根據(jù) 2x+=2kπ-,解出x的值即為所求.
(Ⅱ)由 kπ-≤2x+≤kπ+,k∈z,解不等式可得x的范圍即為f(x)的單調(diào)遞增區(qū)間.
點(diǎn)評:本題考查兩角和差的正弦公式的應(yīng)用,正弦函數(shù)的單調(diào)性和最值,化簡函數(shù)f(x)的解析式為2sin(2x+),是解題
的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a-
22x+1

(1)求證:f(x)是增函數(shù);
(2)求a的值,使f(x)為奇函數(shù);
(3)當(dāng)f(x)為奇函數(shù)時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x 2+ax+a
x
,且a<1.
(1)當(dāng)x∈[1,+∞)時(shí),判斷f(x)的單調(diào)性并證明;
(2)在(1)的條件下,若m滿足f(3m)>f(5-2m),試確定m的取值范圍.
(3)設(shè)函數(shù)g(x)=x•f(x)+|x2-1|+(k-a)x-a,k為常數(shù).若關(guān)于x的方程g(x)=0在(0,2)上有兩個(gè)解x1,x2,求k的取值范圍,并比較
1
x1
+
1
x2
與4的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x 2+ax+a
x
,且a<1

(1)當(dāng)x∈[1,+∞)時(shí),判斷f(x)的單調(diào)性并證明;
(2)設(shè)函數(shù)g(x)=x•f(x)+|x2-1|+(k-a)x-a,k為常數(shù)..若關(guān)于x的方程g(x)=0在(0,2)上有兩個(gè)解x1,x2,求k的取值范圍,并比較
1
x1
+
1
x2
與4的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•藍(lán)山縣模擬)若函數(shù)y=f(x),x∈D同時(shí)滿足下列條件,(1)在D內(nèi)為單調(diào)函數(shù);(2)存在實(shí)數(shù)m,n.當(dāng)x∈[m,n]時(shí),y∈[m,n],則稱此函數(shù)為D內(nèi)等射函數(shù),設(shè)f(x)=
ax+a-3lna
(a>0,且a≠1)則:
(1)f(x)在(-∞,+∞)的單調(diào)性為
增函數(shù)
增函數(shù)
;
(2)當(dāng)f(x)為R內(nèi)的等射函數(shù)時(shí),a的取值范圍是
(0,1)∪(1,2)
(0,1)∪(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a∈R,f(x)=
a•2x+a-2
2x+1
(x∈R),
(1)確定a的值,使f(x)為奇函數(shù).
(2)當(dāng)f(x)為奇函數(shù)時(shí),對于給定的正實(shí)數(shù)k,解不等式 f-1(x)>log2
1+x
k

(3)設(shè)g(n)=
n
n+1
(n∈N).當(dāng)f(x)是奇函數(shù)時(shí),試比較f(n)與g(n)的大。

查看答案和解析>>

同步練習(xí)冊答案