(本小題滿分12分)
如圖,四棱錐中,底面,四邊形中, ,, ,,E為中點(diǎn).
(1)求證:CD⊥面PAC;(2)求:異面直線BE與AC所成角的余弦值;
(1)見(jiàn)解析 (2) 90°
解析試題分析:(1)(6分)
∵PA⊥面ABCD,CD面ABCD ∴PA⊥CD 2分
∵,,且 AB=BC=2
∴∠ABC=90°,AC=2,∠CAD=45°
∵AD=4 ∴CD=2
∵CD2+AC2=AD2 ∴AC⊥CD 4分
∵AC∩PA=A ∴CD⊥面PAC 6分
(2)(6分)解:
方法一:以A為原點(diǎn),分別以AB、AD、AP所在直線為x軸、y軸、z軸建立空間直角坐標(biāo)系
則A(0,0,0),B(2,0,0),C(2,2,0),P(0,0,2) 2分
∵E是PC中點(diǎn)
∴E(1,1,1)
4分
∵
∴BE⊥AC ∴BE與AC所成的角為90° 6分
方法二:作AC中點(diǎn)O,連結(jié)EO
∵E、O分別是PC、AC中點(diǎn)
∴EO//PA
∵PA⊥面ABCD ∴EO⊥面ABCD
∴EO⊥AC
可證得ABCG是正方形 ∴AC⊥BO
∵BO∩EO=O ∴AC⊥面BEO
∴AC⊥BE ∴BE與AC所成的角為90°
方法三:作PD中點(diǎn)F,AD中點(diǎn)G
∵AD2BC,AG=GD
∴四邊形ABCG是正方形,且BG//CD ∴BO
∵EF是△PCD的中位線 ∴EF
∴EFBO ∴BEFO
∴BE與AC所成的角等于OF與AC所成的角
PB=2,BC=2,PC= ∴PB⊥BC
∵E是PC中點(diǎn) ∴BE=
PD= ∴AF=
∵AO=,OF=BE=,AF= ∴∠AOF=90° 即BE與AC所成的角為90°
考點(diǎn):考查線面垂直的判定和異面直線所成角的求解
點(diǎn)評(píng):立體幾何的求解有兩大思路。其一:幾何法,依據(jù)線面的位置關(guān)系,長(zhǎng)度關(guān)系推理計(jì)算:其二,代數(shù)法,利用空間坐標(biāo)系,點(diǎn)的坐標(biāo)轉(zhuǎn)化為向量運(yùn)算
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(14分)如右圖,簡(jiǎn)單組合體ABCDPE,其底面ABCD為邊長(zhǎng)為的正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC=.
(1)若N為線段PB的中點(diǎn),求證:EN//平面ABCD;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分10分)已知:四邊形ABCD是空間四邊形,E, H分別是邊AB,AD的中點(diǎn),F(xiàn), G分別是邊CB,CD上的點(diǎn),且.
求證:(1)四邊形EFGH是梯形;
(2)FE和GH的交點(diǎn)在直線AC上 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分13分)
如圖,棱錐P—ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=.
(1)求證:BD⊥平面PAC;
(2)求二面角P—CD—B余弦值的大小
(3)求點(diǎn)C到平面PBD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
本小題滿分14分)
如圖,在直三棱柱中,,,,點(diǎn)、分別是、的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)證明:平面平面;
(Ⅲ)求多面體A1B1C1BD的體積V.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
如圖,直三棱柱ABC?A1B1C1中, AC= BC=AA1,D是棱AA1的中點(diǎn),DC1⊥BD.
(Ⅰ)證明:DC1⊥BC;
(Ⅱ)求二面角A1?BD?C1的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)如圖,三棱柱ABC-A1B1C1的所有棱長(zhǎng)都為2,D為CC1中點(diǎn),平面ABC
(Ⅰ)求證:AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的余弦值;
(Ⅲ)求點(diǎn)C到平面A1BD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)如圖,在中,是上的高,沿把折起,使 。
(Ⅰ)證明:平面ADB ⊥平面BDC;
(Ⅱ)設(shè)E為BC的中點(diǎn),求AE與DB夾角的余弦值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com