復數(shù)z滿足zi=1+3i,則z在復平面內所對應的點的坐標是( 。
A、(1,-3)
B、(-1,3)
C、(-3,1)
D、(3,-1)
考點:復數(shù)代數(shù)形式的乘除運算,復數(shù)的代數(shù)表示法及其幾何意義
專題:數(shù)系的擴充和復數(shù)
分析:利用復數(shù)的運算法則即可得出.
解答: 解:∵復數(shù)z滿足zi=1+3i,
∴-i•i•z=-i(1+3i),
化為z=3-i.
∴z在復平面內所對應的點的坐標是(3,-1).
故選:D.
點評:本題考查了復數(shù)的運算法則,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設z=a+i(a∈R+,i是虛數(shù)單位),滿足|
2
z
|=
2
,則a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個均勻小正方體的六個面中,三個面上標以數(shù)0,兩個面上標以數(shù)1,一個面上標以數(shù)3,將這個小正方體拋擲兩次,則向上的數(shù)之積的數(shù)學期望是(  )
A、
4
9
B、
5
9
C、
7
36
D、
25
36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x、y滿足不等式組
x≥0
y≥0
2x+y≤2
,且ax+by≤1,(a>0,b>0)恒成立,則a+b的取值范圍是( 。
A、(0,4]
B、(0,
3
2
]
C、(0,2)
D、[
3
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對任意實數(shù)x,都有(x-1)11=a0+a1(x-3)+a2(x-3)2+a3(x-3)3+…+a11(x-3)11,則
a1+a3+a5+a7+a11 
a9
=( 。
A、
311+221
220
B、
311-221
220
C、
311-441
440
D、
311+441
440

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知不等式組
0≤x≤2
x+y-2≥0
x-y+2≥0
,則其表示的平面區(qū)域的面積是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所給的程序運行結果為S=35,那么判斷框中應填入的關于k的條件是(  )
A、k=7B、k≤6
C、k<6D、k>6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

由于當前學生課業(yè)負擔較重,造成青少年視力普遍下降,現(xiàn)從湖口中學隨機抽取16名學生,經(jīng)校醫(yī)用對數(shù)視力表檢查得到每個學生的視力狀況的莖葉圖(以小數(shù)點前的一位數(shù)字為莖,小數(shù)點后的一位數(shù)字為葉)如圖:
(1)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(2)若視力測試結果不低于5.0,則稱為“good sight”,求校醫(yī)從這16人中隨機選取3人,至多有2人是“good sight”的概率;
(3)以這16人的樣本數(shù)據(jù)來估計整個學校的總體數(shù)據(jù),若從該校(人數(shù)很多)任選4人,記ξ表示抽到“good sight”學生的人數(shù),求ξ的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某城市要建成宜商、宜居的國際化新城,該城市的東城區(qū)、西城區(qū)分別引進8個廠家,現(xiàn)對兩個區(qū)域的16個廠家進行評估,綜合得分情況如莖葉圖所示.
(Ⅰ)根據(jù)莖葉圖判斷哪個區(qū)域廠家的平均分較高;
(Ⅱ)規(guī)定85分以上(含85分)為優(yōu)秀廠家,若從該兩個區(qū)域各選一個優(yōu)秀廠家,求得分差距不超過5的概率.

查看答案和解析>>

同步練習冊答案