【題目】設(shè)函數(shù)f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)存在極值點x0 , 且f(x1)=f(x0),其中x1≠x0 , 求證:x1+2x0=0;
(3)設(shè)a>0,函數(shù)g(x)=|f(x)|,求證:g(x)在區(qū)間[﹣1,1]上的最大值不小于

【答案】
(1)

解:若f(x)=x3﹣ax﹣b,則f′(x)=3x2﹣a,

分兩種情況討論:

①、當a≤0時,有f′(x)=3x2﹣a≥0恒成立,

此時f(x)的單調(diào)遞增區(qū)間為(﹣∞,+∞),

②、當a>0時,令f′(x)=3x2﹣a=0,解得x=- 或x= ,

當x> 或x<﹣ 時,f′(x)=3x2﹣a>0,f(x)為增函數(shù),

當﹣ <x< 時,f′(x)=3x2﹣a<0,f(x)為減函數(shù),

故f(x)的增區(qū)間為(﹣∞,﹣ ),( ,+∞),減區(qū)間為(﹣ ,


(2)

解:若f(x)存在極值點x0,則必有a>0,且x0≠0,

由題意可得,f′(x)=3x2﹣a,則x02= ,

進而f(x0)=x03﹣ax0﹣b=﹣ x0﹣b,

又f(﹣2x0)=﹣8x03+2ax0﹣b=﹣ x0+2ax0﹣b=f(x0),

由題意及(Ⅰ)可得:存在唯一的實數(shù)x1,滿足f(x1)=f(x0),其中x1≠x0,

則有x1=﹣2x0,故有x1+2x0=0;


(3)

解:設(shè)g(x)在區(qū)間[﹣1,1]上的最大值M,max{x,y}表示x、y兩個數(shù)的最大值,

下面分三種情況討論:

①當a≥3時,﹣ ≤﹣1<1≤ ,

由(I)知f(x)在區(qū)間[﹣1,1]上單調(diào)遞減,

所以f(x)在區(qū)間[﹣1,1]上的取值范圍是[f(1),f(﹣1)],

因此M=max{|f(1)|,|f(﹣1)|}=max{|1﹣a﹣b|,|﹣1+a﹣b|}

=max{|a﹣1+b|,|a﹣1﹣b|}= ,

所以M=a﹣1+|b|≥2

②當 a<3時, ,

由(Ⅰ)、(Ⅱ)知,f(﹣1)≥ =f( ),f(1)≤ =

所以f(x)在區(qū)間[﹣1,1]上的取值范圍是[f( ),f(﹣ )],

因此M=max{|f( )|,|f(﹣ )|}=max{| |,| |}

=max{| |,| |}=

③當0<a< 時, ,

由(Ⅰ)、(Ⅱ)知,f(﹣1)< =f( ),f(1)> = ,

所以f(x)在區(qū)間[﹣1,1]上的取值范圍是[f(﹣1),f(1)],

因此M=max{|f(﹣1)|,|f(1)|}=max{|﹣1+a﹣b|,|1﹣a﹣b|}

=max{|1﹣a+b|,|1﹣a﹣b|}=1﹣a+|b|>

綜上所述,當a>0時,g(x)在區(qū)間[﹣1,1]上的最大值不小于


【解析】(1)求出f(x)的導數(shù),討論a≤0時f′(x)≥0,f(x)在R上遞增;當a>0時,由導數(shù)大于0,可得增區(qū)間;導數(shù)小于0,可得減區(qū)間;
(2)由條件判斷出a>0,且x0≠0,由f′(x0)=0求出x0 , 分別代入解析式化簡f(x0),f(﹣2x0),化簡整理后可得證;
(3)設(shè)g(x)在區(qū)間[﹣1,1]上的最大值M,根據(jù)極值點與區(qū)間的關(guān)系對a分三種情況討論,運用f(x)單調(diào)性和前兩問的結(jié)論,求出g(x)在區(qū)間上的取值范圍,利用a的范圍化簡整理后求出M,再利用不等式的性質(zhì)證明結(jié)論成立.
本題考查導數(shù)的運用:求單調(diào)區(qū)間和最值,不等式的證明,注意運用分類討論的思想方法和轉(zhuǎn)化思想,考查分析法在證明中的應用,以及化簡整理、運算能力,屬于難題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的對稱軸為坐標軸,頂點是坐標原點,準線方程為,直線與拋物線相交于不同的, 兩點.

(1)求拋物線的標準方程;

(2)如果直線過拋物線的焦點,求的值;

(3)如果,直線是否過一定點,若過一定點,求出該定點;若不過一定點,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知AB,CD是圓O中兩條互相垂直的直徑,兩個小圓與圓O以及AB,CD均相切,則往圓O內(nèi)投擲一個點,該點落在陰影部分的概率為(
A.12﹣8
B.3﹣2
C.8﹣5
D.6﹣4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知曲線C1的參數(shù)方程為 (φ為參數(shù)),以原點O為極點,x軸的非負半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=sinθ.
(Ⅰ)求曲線C1的極坐標方程及曲線C2的直角坐標方程;
(Ⅱ)已知曲線C1 , C2交于O,A兩點,過O點且垂直于OA的直線與曲線C1 , C2交于M,N兩點,求|MN|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關(guān)于下列命題:

①若是第一象限角,且,則;

②函數(shù)是偶函數(shù);

③函數(shù)的一個對稱中心是;

④函數(shù)上是增函數(shù),

所有正確命題的序號是_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱柱中, , , , , 。

(1)設(shè),異面直線所成角的余弦值為,求的值;

(2)若的中點,求平面和平面所成二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓經(jīng)過點,離心率為,左、右焦點分別為

(1)求橢圓的方程;

(2)若直線與橢圓交于A,B兩點,與以為直徑的圓交于C,D兩點,的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=4sincos x+.

(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;

(2)若函數(shù)g(x)=f(x)-m區(qū)間在上有兩個不同的零點x1,x2,求實數(shù)m的取值范圍,并計算tan(x1+x2)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的最小值為

⑴設(shè),求證: 上單調(diào)遞增;

⑵求證: ;

⑶求函數(shù)的最小值.

查看答案和解析>>

同步練習冊答案