【題目】已知函數(shù)fx=x2﹣2|x|

1)將函數(shù)fx)寫(xiě)成分段函數(shù);

2)判斷函數(shù)的奇偶性,并畫(huà)出函數(shù)圖象.

3)若函數(shù)在[a, +∞)上單調(diào),求a的范圍。

【答案】(1)(2)見(jiàn)解析(3)

【解析】試題分析:1)對(duì)自變量分類討論,得到分段函數(shù);(2確定函數(shù)的定義域,驗(yàn)證fx)與fx)的關(guān)系,可得函數(shù)的奇偶性;利用配方法確定函數(shù)的對(duì)稱軸與頂點(diǎn)坐標(biāo),即可得到函數(shù)的圖象;(3)由(2圖象可得:a的范圍.

試題解析:

(1)當(dāng)x0時(shí),fx=x2﹣2x

當(dāng)x=0時(shí),fx=0

當(dāng)x<0時(shí),fx=x2+2x

函數(shù)fx)在R上的解析式為

,

(2)f(x)的定義域?yàn)镽

f(-x)=(-x2)-2|-x|=f(x)

∴fx)是偶函數(shù),

圖象如圖

3函數(shù)在[a, +)上單調(diào),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,若存在實(shí)數(shù)a、b、c、d,滿足f(a)=f(b)=f(c)=f(d),其中d>c>b>a>0,則abcd的取值范圍是(
A.(16,21)
B.(16,24)
C.(17,21)
D.(18,24)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合題。
(1)四個(gè)不同球放入編號(hào)為1,2,3,4的四個(gè)盒中,則恰有一個(gè)空盒的放法有多少種?
(2)設(shè)有編號(hào)為1,2,3,4,5的五個(gè)球和編號(hào)為1,2,3,4,5的盒子現(xiàn)將這5個(gè)球投入5個(gè)盒子要求每個(gè)盒子放一個(gè)球,并且恰好有兩個(gè)球的號(hào)碼與盒子號(hào)碼相同,問(wèn)有多少種不同的方法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 直徑, 所在的平面, 是圓周上不同于的動(dòng)點(diǎn).

(1)證明:平面平面;

(2)若,且當(dāng)二面角的正切值為時(shí),求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某球星在三分球大賽中命中率為 ,假設(shè)三分球大賽中總計(jì)投出8球,投中一球得3分,投丟一球扣一分,則該球星得分的期望與方差分別為(
A.16,32
B.8,32
C.8,8
D.32,32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C極坐標(biāo)方程: ,點(diǎn)P極坐標(biāo)為 ,直線l過(guò)點(diǎn)P,且傾斜角為
(1)求曲線C的直角坐標(biāo)方程及直線l參數(shù)方程;
(2)若直線l與曲線C交于A,B兩點(diǎn),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(m1,2),B(1,1),C(3m2m1)

(1)A,BC三點(diǎn)共線,求實(shí)數(shù)m的值;

(2)ABBC,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .
(1)若曲線 在點(diǎn) 處的切線斜率為3,且 時(shí) 有極值,求函數(shù) 的解析式;
(2)在(1)的條件下,求函數(shù) 上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】( 本小題滿分14)

如圖,在三棱錐PABC中,PC底面ABCABBC,D,E分別是AB,PB的中點(diǎn).

(1)求證:DE平面PAC

(2)求證:ABPB

查看答案和解析>>

同步練習(xí)冊(cè)答案