5.《九章算術(shù)》“竹九節(jié)”問題:現(xiàn)有一根9節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面4節(jié)的容積共3升,下面3節(jié)的容積共4升,則第5節(jié)的容積為( 。
A.$\frac{10}{11}$升B.$\frac{65}{66}$升C.$\frac{67}{66}$升D.$\frac{37}{33}$升

分析 設(shè)此等差數(shù)列為{an},公差d>0,由題意可得:a1+a2+a3+a4=3,a7+a8+a9=4,可得4a1+6d=3,3a1+21d=4,聯(lián)立解出即可得出.

解答 解:設(shè)此等差數(shù)列為{an},公差d>0,
由題意可得:a1+a2+a3+a4=3,a7+a8+a9=4,
則4a1+6d=3,3a1+21d=4,聯(lián)立解得a1=$\frac{13}{22}$,d=$\frac{7}{66}$.
∴a5=$\frac{13}{22}$+4×$\frac{7}{66}$=$\frac{67}{66}$.
故選:C.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若$sinα=-\frac{1}{2}$,P(2,y)是角α終邊上一點(diǎn),則y=( 。
A.-1B.$\frac{{2\sqrt{3}}}{3}$C.$-\frac{{2\sqrt{3}}}{3}$D.$±\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知$cosα=-\frac{3}{5}$,并且α是第二象限角,則tanα的值為( 。
A.$\frac{3}{4}$B.$-\frac{3}{4}$C.$\frac{4}{3}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.為大力提倡“厲行節(jié)約,反對(duì)浪費(fèi)”,某市通過隨機(jī)詢問100名性別不同的居民是否做到“光盤”行動(dòng),得到如下列聯(lián)表及附表:
經(jīng)計(jì)算:${X^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}≈3.03$
做不到“光盤”行動(dòng)做到“光盤”行動(dòng)
4510
3015
P(X2≥x00.100.050.025
x02.7063.8415.024
參照附表,得到的正確結(jié)論是( 。
A.在犯錯(cuò)誤的概率不超過1%的前提下,認(rèn)為“該市民能否做到‘光盤’行動(dòng)與性別有關(guān)”
B.在犯錯(cuò)誤的概率不超過1%的前提下,認(rèn)為“該市民能否做到‘光盤’行動(dòng)與性別無關(guān)”
C.有90%以上的把握認(rèn)為“該市民能否做到‘光盤’行動(dòng)與性別有關(guān)”
D.有90%以上的把握認(rèn)為“該市民能否做到‘光盤’行動(dòng)與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知平面向量$\overrightarrow a=(3,2)$,$\overrightarrow b=(-1,2)$,$\overrightarrow c=(4,1)$.
(1)求滿足$\overrightarrow a=m\overrightarrow b+n\overrightarrow c$的實(shí)數(shù)m,n;
(2)若$({\overrightarrow a+k\overrightarrow c})⊥({2\overrightarrow b-\overrightarrow a})$,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)$f(x)=\sqrt{\frac{x}{10-x}}$的定義域?yàn)閇0,10).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若$sinC=\frac{2}{3},a=3,c=4$,則角A等于( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x2-2x,g(x)=ax-1,若?x1∈[-1,2],?x2∈[-1,2],使得f(x1)=g(x2),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知定義域?yàn)镽的函數(shù) f (x)的導(dǎo)函數(shù)為f'(x),且滿足f'(x)-2f (x)>4,若 f (0)=-1,則不等式f(x)+2>e2x的解集為( 。
A.(0,+∞)??B.(-1,+∞)??C.(-∞,0)?D.(-∞,-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案