10.函數(shù)y=f(2x-1)是偶函數(shù),則函數(shù)y=f(2x+1)的對稱軸是(  )
A.x=-1B.x=0C.$x=\frac{1}{2}$D.$x=-\frac{1}{2}$

分析 根據(jù)偶函數(shù)的圖象關(guān)于y軸對稱,利用圖象的變換規(guī)律,即可求得函數(shù)y=f(2x+1)的對稱軸.

解答 解:∵函數(shù)y=f(2x-1)是偶函數(shù),∴函數(shù)的圖象關(guān)于y軸對稱
∵函數(shù)y=f(2x+1)是由函數(shù)y=f(2x-1)的圖象向左平移1個單位得到,
∴函數(shù)y=f(2x+1)的對稱軸是直線x=-1,
故選:A.

點(diǎn)評 本題考查偶函數(shù)圖象的對稱性,考查圖象的變換,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρsin2θ=2cosθ,過點(diǎn)p(-3,-5)的直線$l:\left\{{\begin{array}{l}{x=-3+\frac{{\sqrt{2}}}{2}t}\\{y=-5+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t為參數(shù))與曲線C相交于點(diǎn)M,N兩點(diǎn).
(1)求曲線C的平面直角坐標(biāo)系方程和直線l的普通方程;
(2)求$\frac{1}{{|{PM}|}}+\frac{1}{{|{PN}|}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知集合A={x|-5≤x≤3},B={x|m+1<x<2m+3}且B⊆A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)條件p:x>0,條件q:x>1,則條件p是條件q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow$|=2,$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow$),則$\overrightarrow{a}$與$\overrightarrow$的夾角為(  )
A.$\frac{π}{2}$B.$\frac{2π}{3}$C.$\frac{π}{6}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知F是雙曲線C:$\frac{x^2}{4}-\frac{y^2}{12}=1$的左焦點(diǎn),A(1,4),P是雙曲線右支上的動點(diǎn).求:
(1)|PF|+|PA|的最小值;
(2)|PF|-|PA|的有沒有最大值?若有,求此最大值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,角A、B、C所對的邊分別為a、b、c,且$cosC=\frac{1}{5}$.
(Ⅰ)求$sin(2C+\frac{π}{4})$的值;
(Ⅱ)若$\overrightarrow{CA}•\overrightarrow{CB}=1$,$a+b=\sqrt{37}$,求邊c的值及△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知A、B為橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$和雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的公共頂點(diǎn),P、Q分別為雙曲線和橢圓上不同于A、B的動點(diǎn),且$\overrightarrow{AP}$+$\overrightarrow{BP}$=λ($\overrightarrow{AQ}$+$\overrightarrow{BQ}$)(λ∈R,|λ|>1).設(shè)AP、BP、AQ、BQ的斜率分別為k1、k2、k3、k4
(1)求證:點(diǎn)P,Q,O三點(diǎn)共線;
(2)求k1+k2+k3+k4的值;
(3)設(shè)F1、F2分別為雙曲線和橢圓的右焦點(diǎn),若QF1∥PF2,求k12+k22+k32+k42的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知向量$\overrightarrow{a}$=(1,-1),$\overrightarrow{a}$•$\overrightarrow$=0,|$\overrightarrow{a}$-$\overrightarrow$|=2,則|$\overrightarrow$|=$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊答案