【題目】(1)已知函數(shù)f(x)的定義域為[0,1],求f(x2+1)的定義域;
(2)已知f()的定義域為[0,3],求f(x)的定義域.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(, 是自然對數(shù)的底數(shù)).
(1)當時,求曲線在點處的切線方程;
(2)當時,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在各項都不相等的等差數(shù)列{an}中,a1,a2是關于x的方程x2-7a4x+18a3=0的兩個實根.
(1) 試判斷-22是否在數(shù)列{an}中;
(2) 求數(shù)列{an}的前n項和Sn的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義區(qū)間(a,b),[a,b),(a,b],[a,b]的長度均為,多個區(qū)間并集的長度為各區(qū)間長度之和,例如,(1,2) [3,5)的長度d=(2-1)+(5-3)=3. 用[x]表示不超過x的最大整數(shù),記{x}=x-[x],其中.設, ,當時,不等式解集區(qū)間的長度為,則的值為_______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中
(1)當時,求函數(shù)在處的切線方程;
(2)若函數(shù)在定義域上有且只有一個極值點,求實數(shù)的取值范圍;
(3)若對任意恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三棱錐A-BCD中,△ABC是等腰直角三角形,且AC⊥BC,BC=2,AD⊥平面BCD,AD=1.
(1)求證:平面ABC⊥平面ACD;
(2)若E為AB中點,求點A到平面CED的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩個焦點分別為,離心率為.設過點的直線與橢圓相交于不同兩點, 周長為.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)已知點,證明:當直線變化時,總有TA與的斜率之和為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱ABCA1B1C1中,已知AB⊥側面BB1C1C,AB=BC=1,BB1=2,∠BCC1= .
(1)求證:C1B⊥平面ABC;
設 (0≤λ≤1),且平面AB1E與BB1E所成的銳二面角的大小為30°,
試求λ的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某綜藝節(jié)目為增強娛樂性,要求現(xiàn)場嘉賓與其場外好友連線互動.凡是拒絕表演節(jié)目的好友均無連線好友的機會;凡是選擇表演節(jié)目的好友均需連線未參加過此活動的個好友參與此活動,以此下去.
(Ⅰ)假設每個人選擇表演與否是等可能的,且互不影響,則某人選擇表演后,其連線的個好友中不少于個好友選擇表演節(jié)目的概率是多少?
(Ⅱ)為調查“選擇表演者”與其性別是否有關,采取隨機抽樣得到如下列表:
選擇表演 | 拒絕表演 | 合計 | |
男 | 50 | 10 | 60 |
女 | 10 | 10 | 20 |
合計 | 60 | 20 | 80 |
①根據(jù)表中數(shù)據(jù),是否有的把握認為“表演節(jié)目”與好友的性別有關?
②將此樣本的頻率視為總體的概率,隨機調查名男性好友,設為個人中選擇表演的人數(shù),求的分布列和期望.
附:;
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com