已知函數(shù)的導(dǎo)函數(shù)是,在處取得極值,且
,
(Ⅰ)求的極大值和極小值;
(Ⅱ)記在閉區(qū)間上的最大值為,若對任意的總有
成立,求的取值范圍;
(Ⅲ)設(shè)是曲線上的任意一點(diǎn).當(dāng)時,求直線OM斜率的最
小值,據(jù)此判斷與的大小關(guān)系,并說明理由.
(Ⅰ)的極大值和極小值分別為4和0 (Ⅱ)
(Ⅲ)
【解析】
試題分析:(I)依題意,,解得,
由已知可設(shè),因為,所以,
則,導(dǎo)函數(shù).
列表:
1 |
(1,3) |
3 |
(3,+∞) |
||
+ |
0 |
- |
0 |
+ |
|
遞增 |
極大值4 |
遞減 |
極小值0 |
遞增 |
由上表可知在處取得極大值為,
在處取得極小值為.
(Ⅱ)①當(dāng)時,由(I)知在上遞增,
所以的最大值,
由對任意的恒成立,得,則,
因為,所以,則,
因此的取值范圍是.
②當(dāng)時,因為,所以的最大值,
由對任意的恒成立,得,∴,
因為,所以,因此的取值范圍是,
綜上①②可知,的取值范圍是.
(Ⅲ)當(dāng)時,直線斜率,
因為,所以,則,
即直線斜率的最小值為4
首先,由,得.
其次,當(dāng)時,有,所以,
證明如下:記,則,
所以在遞增,又,
則在恒成立,即,所以.
考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值;利用導(dǎo)數(shù)研究函數(shù)的極值.
點(diǎn)評:本題考查導(dǎo)數(shù)的應(yīng)用,考查函數(shù)極值的求法,考查實數(shù)的取值范圍的求法,考查兩個數(shù)比較大小的方法.解題時要認(rèn)真審題,仔細(xì)解答,注意挖掘題設(shè)中的隱含條件,合理地進(jìn)行等價轉(zhuǎn)化.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年福建四地六校高三上學(xué)期第二次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)的導(dǎo)函數(shù)是,在處取得極值,且.
(Ⅰ)求的極大值和極小值;
(Ⅱ)記在閉區(qū)間上的最大值為,若對任意的總有成立,求的取值范圍;
(Ⅲ)設(shè)是曲線上的任意一點(diǎn).當(dāng)時,求直線OM斜率的最小值,據(jù)此判斷與的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江蘇省高三年級第一次調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)的導(dǎo)函數(shù)是二次函數(shù),當(dāng)時,有極值,且極大值為2,.
(1)求函數(shù)的解析式;
(2)有兩個零點(diǎn),求實數(shù)的取值范圍;
(3)設(shè)函數(shù),若存在實數(shù),使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年遼寧省高三第一次模擬考試數(shù)學(xué)理卷 題型:填空題
已知函數(shù)的導(dǎo)函數(shù)是,設(shè)是方程的兩根.若,,則||的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三第一次月考理科數(shù)學(xué)卷 題型:填空題
已知函數(shù)的導(dǎo)函數(shù)是,
. 設(shè)是方程的兩根,則||的取值范圍為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com