數(shù)列{an}滿足:a1=
1
4
,a2=
1
5
,且a1a2+a2a3+…+anan+1=na1an+1對(duì)任何的正整數(shù)n都成立,則
1
a1
+
1
a2
+…+
1
a97
的值為(  )
分析:a1a2+a2a3+…+anan+1=na1an+1,①;a1a2+a2a3+…+anan+1+an+1an+2=(n+1)a1an+2,②;①-②,得-an+1an+2=na1an+1-(n+1)a1an+2,
n+1
an+1
-
n
an+2
=4
,同理,得
n
an
-
n-1
an+1
=4,整理,得
2
an+1
=
1
an
+
1
an+2
,{
1
an
}
是等差數(shù)列.
由此能求出
1
a1
+
1
a2
+…+
1
a97
解答:解:a1a2+a2a3+…+anan+1=na1an+1,①
a1a2+a2a3+…+anan+1+an+1an+2=(n+1)a1an+2,②
①-②,得-an+1an+2=na1an+1-(n+1)a1an+2,
n+1
an+1
-
n
an+2
=4
,
同理,得
n
an
-
n-1
an+1
=4,
n+1
an+1
-
n
an+2
=
n
an
-
n-1
an+1
,
整理,得
2
an+1
=
1
an
+
1
an+2

{
1
an
}
是等差數(shù)列.
∵a1=
1
4
,a2=
1
5
,
∴等差數(shù)列{
1
an
}
的首項(xiàng)是
1
a1
=4
,公差d=
1
a2
-
1
a1
=5-4=1
,
1
an
=4+(n-1)×1=n+3

1
a1
+
1
a2
+…+
1
a97
=97× 4+
97×96
2
×1
=5044.
故選B.
點(diǎn)評(píng):本題考查數(shù)列的綜合應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意挖掘題設(shè)中的隱含條件,合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足a1=a,an+1=can+1-c(n∈N*),其中a,c為實(shí)數(shù),且c≠0.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)a=
1
2
,c=
1
2
bn=n(1-an)(n∈N*)
,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足a1=a,an+1=
an+3
2
,n=1,2,3,….
(Ⅰ)若an+1=an,求a的值;
(Ⅱ)當(dāng)a=
1
2
時(shí),證明:an
3
2
;
(Ⅲ)設(shè)數(shù)列{an-1}的前n項(xiàng)之積為Tn.若對(duì)任意正整數(shù)n,總有(an+1)Tn≤6成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•天津模擬)設(shè)數(shù)列{an}滿足a1=a,an+1=can+1-c(n∈N*),其中a,c為實(shí)數(shù),且c≠0.
(1)求證:a≠1時(shí)數(shù)列{an-1}是等比數(shù)列,并求an;
(2)設(shè)a=
1
2
c=
1
2
,bn=n(1-an)(n∈N*)
,求數(shù)列{bn}的前n項(xiàng)和Sn;
(3)設(shè)a=
3
4
,c=-
1
4
,cn=
3+an
2-an
(n∈N*),記dn=c2n-c2n-1(n∈N*)
,設(shè)數(shù)列{dn}的前n項(xiàng)和為Tn,求證:對(duì)任意正整數(shù)n都有Tn
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•大連二模)已知a為實(shí)數(shù),數(shù)列{an}滿足a1=a,當(dāng)n≥2時(shí),an=
an-1-4 (an-1>4)
5-an-1 (an-1≤4)

(I)當(dāng)a=200時(shí),填寫下列表格;
N 2 3 51 200
an
(II)當(dāng)a=200時(shí),求數(shù)列{an}的前200項(xiàng)的和S200;
(III)令b n=
an
(-2)n
,Tn=b1+b2…+bn求證:當(dāng)1<a<
5
3
時(shí),T n
5-3a
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知常數(shù)a、b都是正整數(shù),函數(shù)f(x)=
x
bx+1
(x>0),數(shù)列{an}滿足a1=a,
1
an+1
=f(
1
an
)
(n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若a=8b,且等比數(shù)列{bn}同時(shí)滿足:①b1=a1,b2=a5;②數(shù)列{bn}的每一項(xiàng)都是數(shù)列{an}中的某一項(xiàng).試判斷數(shù)列{bn}是有窮數(shù)列或是無窮數(shù)列,并簡(jiǎn)要說明理由;
(3)對(duì)問題(2)繼續(xù)探究,若b2=am(m>1,m是常數(shù)),當(dāng)m取何正整數(shù)時(shí),數(shù)列{bn}是有窮數(shù)列;當(dāng)m取何正整數(shù)時(shí),數(shù)列{bn}是無窮數(shù)列,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案