若命題p:“?x0∈R,使得x02+(1-a)x0+1<0”,命題q:“?x∈R,x2-2x+2>a”,若命題“p∨q”為真,“p∧q”為假,求a的取值范圍.
考點:復合命題的真假
專題:簡易邏輯
分析:分別判斷命題p,q的真假,根據(jù)復合命題之間的關系即可得到結論.
解答: 解:若p真,由題意知△=(1-a)2-4>0,解得a<-1或a>3
若q真,由題意知a<(x2-2x+2)min=1,
∴a<1.
又命題“p∨q”為真,“p∧q”為假,故命題p,q中一真一假,
當p真q假時,解得a>3;
當q真p假時,解得-1≤a<1.
綜上述:a>3或-1≤a<1.
點評:本題主要考查復合命題的真假應用,分別判斷命題p,q的真假是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|<
π
2
)的最高點D的坐標(
π
8
,2),由D點運動到相鄰最低點時函數(shù)曲線與x軸的交點(
8
,0)
(1)求f(x)的解析式
(2)求f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,長軸長為4,M為右頂點,過右焦點F的直線與橢圓交于A、B兩點,直線AM、BM與x=4分別交于P、Q兩點,(P、Q不重合).
(1)求橢圓的標準方程;
(2)求證:
FP
FQ
=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

高二一班共有35名學生,其中男生20名,女生15名,今從中選出3名同學參加活動.
(1)其中某一女生必須在內(nèi),不同的取法有多少種?
(2)至少有兩名女生在內(nèi),不同的取法有多少種?
(3)至多有兩名女生在內(nèi)的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在經(jīng)濟學中,函數(shù)f(x)的邊際函數(shù)Mf(x)定義為Mf(x)=f(x+1)-f(x).某造船廠每年最多造船20艘,造船x臺(x∈N*)的產(chǎn)值函數(shù)R(x)=3700x+45x2-10x3(單位:萬元),其成本函數(shù)C(x)=460x+500(單位:萬元),利潤是產(chǎn)值與成本之差.
(1)求利潤函數(shù)P(x)及邊際利潤函數(shù)MP(x);
(2)該造船廠每年造船多少艘,可使年利潤最大?
(3)有人認為“當利潤P(x)最大時,邊際利潤MP(x)也最大”,這種說法對不對?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a,b,c分別是角A,B,C的對邊,
m
=(b,2a-c),
n
=(cosB,cosC),且
m
n

(1)求角B的大小;
(2)設f(x)=cos(ωx-
B
2
)+sinωx(ω>0),且f(x)的最小正周期為π,求f(x)在[0,
π
2
]上的最大值和最小值,及相應的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=lnx-
1
2
x2
(1)討論f(x)的單調(diào)區(qū)間;
(2)求f(x)在區(qū)間[
1
e
,e]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若f(a+b)=f(a)•f(b),(a,b∈N),且f(1)=2,則
f(2)
f(1)
+
f(4)
f(3)
+
f(6)
f(5)
+
f(8)
f(7)
+
f(10)
f(9)
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}滿足:an+1=an+
1
n(n+1)
,a20=1,則a1=
 

查看答案和解析>>

同步練習冊答案