11.已知△ABC中,AB=4,且滿足BC=$\sqrt{3}$CA,則△ABC的面積的最大值為( 。
A.$\sqrt{2}$B.3C.2D.4$\sqrt{3}$

分析 設(shè)CA=b,則BC=$\sqrt{3}$b,利用余弦定理可求得cos2A=$\frac{4}{^{2}}$+$\frac{^{2}}{16}$-1,再利用三角形的面積公式可求得S△ABC=2bsinA,繼而可求S△ABC2=48-$\frac{1}{4}$(b2-16)2,從而可得△ABC面積的最大值.

解答 解:依題意,設(shè)CA=b,則BC=$\sqrt{3}$b,又AB=4,
由余弦定理得:cosA=$\frac{{4}^{2}+^{2}-(\sqrt{3}b)^{2}}{2×4×b}$=$\frac{8-^{2}}{4b}$=$\frac{2}$-$\frac{4}$,
∴cos2A=($\frac{2}$-$\frac{4}$) 2=$\frac{4}{^{2}}$+$\frac{^{2}}{16}$-1,
∴sin2A=1-cos2A=2-$\frac{4}{^{2}}$-$\frac{^{2}}{16}$.
∵S△ABC=$\frac{1}{2}$AB•ACsinA=$\frac{1}{2}$×4bsinA=2bsinA,
∴S2△ABC=4b2sin2A=4b2(2-$\frac{4}{^{2}}$-$\frac{^{2}}{16}$)=48-$\frac{1}{4}$(b2-16)2,
當(dāng)b2=16,即b=4時(shí),4、4、4$\sqrt{3}$能組成三角形,
∴S2max=48,
∴Smax=4$\sqrt{3}$.
故選:D.

點(diǎn)評 本題考查余弦定理與正弦定理的應(yīng)用,著重考查轉(zhuǎn)化思想與二次函數(shù)的配方法,求得S2△ABC=48-$\frac{1}{4}$(b2-16)2是關(guān)鍵,也是難點(diǎn),屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某幾何體的三視圖如圖所示,則幾何體的體積是(  )
A.96B.192C.144D.240

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.復(fù)數(shù)$\frac{4i}{i+1}$的共軛復(fù)數(shù)的虛部為( 。
A.-2B.2C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知-1≤a≤1,-1≤b≤1,則函數(shù)y=lg(x2+2ax+b)的定義域?yàn)槿w實(shí)數(shù)R的概率為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知Sn、Tn分別為數(shù)列{an}、{bn}的前n項(xiàng)和,a1=0,a2=2,2Sn+1=$\sqrt{{S_n}+{S_{n+1}}}$•$\sqrt{{S_{n+1}}+{S_{n+2}}}$,若Tn=$\frac{{{S_n}+{S_{n+1}}}}{2}$,則bn=2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,若a2=$\frac{1}{2}$,$\frac{S_6}{S_2}$=21,則a8=( 。
A.32B.32或-32C.64D.64或-64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.為調(diào)查某地年齡與高血壓的關(guān)系,用簡單隨機(jī)抽樣法從該地區(qū)年齡在20~60的人群中抽取200人測量血壓,結(jié)果如表:
高血壓非高血壓總計(jì)
年齡20到3912c100
年齡40到60b52100
總計(jì)60a200
(1)計(jì)算表中的 a、b、c值;是否有99.9%的把握認(rèn)為高血壓與年齡有關(guān)?并說明理由.
(2)現(xiàn)從這60名高血壓患者中按年齡采用分層抽樣的方法抽取10人,再從這人10中隨機(jī)抽取2人,記年齡在20到39的人數(shù)為隨機(jī)變量X,求X的分布列與期望.
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({a+d})({a+c})({b+d})}}$
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知點(diǎn)A(-$\frac{1}{2}$,0),拋物線y2=2x的焦點(diǎn)為F,點(diǎn)P在拋物線上,連接AP,交y軸于點(diǎn)M,若$\overrightarrow{AP}$=2$\overrightarrow{AM}$,則△APF的面積是( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

同步練習(xí)冊答案