數(shù)列an中,a1=2,an+1=an+cn(c>0,c≠1,n∈N*,),且a1,a2,a3成公比不為1的等比數(shù)列.
(1)求c的值;
(2)求an的通項(xiàng)公式.
(3)求數(shù)列nan的前n項(xiàng)和Sn

解:(1)a1=2,a2=2+c,a3=2+c+c2
∵a22=a1a3
∴(2+c)2=2(2+c+c2
解得c=0(舍去)或c=2
∴c=2

(2)由(1)知an+1-an=2n
∴當(dāng)n≥2時(shí)
an=(an-an-1)+…+(a2-a1)+a1
=2n-1+2n-2++21+2
=
當(dāng)n=1時(shí),也符合,所以an=2n

(3)nan=n•2n
∴Sn=1•21+2•22++(n-1)•2n-1+n•2n(1)
2Sn=1•22+2•23++(n-1)•2n+n•2n+1(2)
(1)-(2):
-Sn=2+22++2n-n•2n+1
∴Sn=2+(n-1)2n+1
分析:(1)根據(jù)題設(shè)遞推式,分別求得a1,a2,a3,根據(jù)等比中項(xiàng)的性質(zhì)可知a22=a1a3,求得q.
(2)利用題設(shè)中的遞推式,采用疊加法求得數(shù)列的通項(xiàng)公式.
(3)由于數(shù)列{nan}由等比和等差數(shù)列構(gòu)成,進(jìn)而采用錯(cuò)位相減法求得數(shù)列的前n項(xiàng)的和.
點(diǎn)評(píng):本題主要考查了數(shù)列的求和問(wèn)題.考查了學(xué)生綜合分析問(wèn)題和基本的運(yùn)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=2,an+1=a n+ln(1+
1
n
)
,則數(shù)列{an}的通項(xiàng)an=( 。
A、
2
ln
n
n-1
n=1
n≥2
B、
2
ln(1+n)
n=1
n≥2
C、1+ln(n+1)
D、2+lnn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=2,an+1=an+2n(n∈N*),則a100=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=2,an+an+1=1(n∈N*),設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,則S2007-2S2006+S2005的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•安徽模擬)在數(shù)列{an}中,a1=2,an+1=4an-3n+1,n∈N*
(1)證明:數(shù)列{an-n}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=
n
an-n
,數(shù)列{bn}的前n項(xiàng)和為Sn,求證:Sn+bn
16
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=2,an+1=1-an(n∈N*),設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,則S2007-2S2008+S2009=
3
3

查看答案和解析>>

同步練習(xí)冊(cè)答案