某公司承建扇環(huán)面形狀的花壇如圖所示,該扇環(huán)面花壇是由以點為圓心的兩個同心圓弧、弧以及兩條線段圍成的封閉圖形.花壇設(shè)計周長為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為米(),圓心角為弧度.

(1)求關(guān)于的函數(shù)關(guān)系式;
(2)在對花壇的邊緣進行裝飾時,已知兩條線段的裝飾費用為4元/米,兩條弧線部分的裝飾費用為9元/米.設(shè)花壇的面積與裝飾總費用的比為,當為何值時,取得最大值?

(1);(2)參考解析

解析試題分析:(1)由于花壇設(shè)計周長為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為米(),圓心角為弧度.所以AD的弧長為,BC的弧長為.所以可得.即可得結(jié)論.
(2)由花壇兩條線段的裝飾費用為4元/米,兩條弧線部分的裝飾費用為9元/米.即可得所需費用的關(guān)系式. 花壇的面積由大扇形面積減去小的扇形面積即可,再利用基本不等式即可求得結(jié)論.
試題解析:(1)設(shè)扇環(huán)的圓心角為q,則,
所以,
(2)花壇的面積為

裝飾總費用為,
所以花壇的面積與裝飾總費用的比,
,則,當且僅當t=18時取等號,
此時
答:當時,花壇的面積與裝飾總費用的比最大.
考點:1.扇形的面積.2.函數(shù)的最值.3.基本不等式的應(yīng)用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

某市居民自來水收費標準如下:每戶每月用水不超過4噸時,每噸為1.80元,當用水超過4噸時,超過部分每噸3.00元,某月甲、乙兩戶共交水費y元,已知甲、乙兩戶該月用水量分別為5x噸、3x噸.
(1)求y關(guān)于x的函數(shù);
(2)若甲、乙兩戶該月共交水費26.4元,分別求出甲、乙兩戶該月的用水量和水費.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知
(1)求函數(shù)的最小值;
(2)對一切恒成立,求實數(shù)的取值范圍;
(3)證明:對一切,都有成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為了尋找馬航殘骸,我國“雪龍?zhí)枴笨瓶即?014年3月26日從港口出發(fā),沿北偏東角的射線方向航行,而在港口北偏東角的方向上有一個給科考船補給物資的小島,海里,且.現(xiàn)指揮部需要緊急征調(diào)位于港口正東海里的處的補給船,速往小島裝上補給物資供給科考船.該船沿方向全速追趕科考船,并在處相遇.經(jīng)測算當兩船運行的航線與海岸線圍成的三角形的面積最小時,這種補給方案最優(yōu).

(1)求關(guān)于的函數(shù)關(guān)系式;
(2)應(yīng)征調(diào)位于港口正東多少海里處的補給船只,補給方案最優(yōu)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)為偶函數(shù).
(1)求的值;
(2)若方程有且只有一個根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

計算
(1)
(2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

橢圓c:(a>b>0)的離心率為,過其右焦點F與長軸垂直的弦長為1,
(1)求橢圓C的方程;
(2)設(shè)橢圓C的左右頂點分別為A,B,點P是直線x=1上的動點,直線PA與橢圓的另一個交點為M,直線PB與橢圓的另一個交點為N,求證:直線MN經(jīng)過一定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知冪函數(shù)為偶函數(shù).
(1)求的解析式;
(2)若函數(shù)在區(qū)間(2,3)上為單調(diào)函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=|2x-1-1|.
(1)作出函數(shù)y=f(x)的圖象;
(2)若a<c,且f(a)>f(c),求證:2a+2c<4.

查看答案和解析>>

同步練習冊答案