(1)已知點(diǎn)A(
3
2
,0)、B(3,0),動點(diǎn)M到A與B的距離比為常數(shù)
1
2
,求點(diǎn)M的軌跡方程.
(2)求與圓(x-1)2+y2=1外切,且與直線x+
3
y=0相切于點(diǎn)Q(3,-
3
)的圓的方程.
(1)設(shè)M(x,y),
(x-
3
2
)
2
+y2
(x-3)2+y2
=
1
2
              
兩邊平方整理得:(x-1)2+y2=1     
(2)設(shè)所求圓方程為(x-a)2+(x-b)2=r2
依題意有
(1-a)2+b2
=1+r
|a+
3b
2
=r
-
3
3
×
b+
3
a-3
=-1
       
∴b=
3
(a-4)代入前兩個(gè)等式得:
(a-1)2+b2
=1+2|a-3|
(1)當(dāng)a>3時(shí),有(a-1)2+3(a-4)2=(2a-5)2
解得a=4,∴b=0,r=2;                                         
(2)當(dāng)a≤3時(shí),有(a-1)2+3(a-4)2=(7-2a)2
解得a=0,∴b=-4
3
,r=6. 
綜上所述:(x-4)2+y2=4;x2+(y+4
3
2=36
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+y2=1
(a>0)的離心率為
3
2

(1)求橢圓的方程;
(2)設(shè)直線l與橢圓相交于不同的兩點(diǎn)A、B,已知點(diǎn)A的坐標(biāo)為(-a,0),若|AB|=
4
2
5
,求直線l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•惠州模擬)已知橢圓
x2
a2
y2
b2
=1(a>b>0)
的離心率e=
3
2
,連接橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4.
(1)求橢圓的方程;
(2)設(shè)直線l與橢圓相交于不同的兩點(diǎn)A,B,已知點(diǎn)A的坐標(biāo)為(-a,0),點(diǎn)Q(0,y0)在線段AB的垂直平分線上,且
QA
• 
QB
=4
,求y0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知點(diǎn)A(
3
2
,0)、B(3,0),動點(diǎn)M到A與B的距離比為常數(shù)
1
2
,求點(diǎn)M的軌跡方程.
(2)求與圓(x-1)2+y2=1外切,且與直線x+
3
y=0相切于點(diǎn)Q(3,-
3
)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(-2,0),B(2,0)
(1)過點(diǎn)A斜率
3
3
的直線l,交以A,B為焦點(diǎn)的雙曲線于M,N兩點(diǎn),若線段MN的中點(diǎn)到y(tǒng)軸的距離為1,求該雙曲線的方程;
(2)以A,B為頂點(diǎn)的橢圓經(jīng)過點(diǎn)C(1,
3
2
),過橢圓的上頂點(diǎn)G作直線s,t,使s⊥t,直線s,t分別交橢圓于點(diǎn)P,Q(P,Q與上頂點(diǎn)G不重合).求證:PQ必過y軸上一定點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案