【題目】某商店舉行促銷反饋活動,顧客購物每滿200元,有一次抽獎機會(即滿200元可以抽獎一次,滿400元可以抽獎兩次,依次類推).抽獎的規(guī)則如下:在一個不透明口袋中裝有編號分別為1,2,34,55個完全相同的小球,顧客每次從口袋中摸出一個小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球編號一次比一次大(如12,5),則獲得一等獎,獎金40元;若摸得的小球編號一次比一次。ㄈ5,3,1),則獲得二等獎,獎金20元;其余情況獲得三等獎,獎金10.

1)某人抽獎一次,求其獲獎金額X的概率分布和數(shù)學期望;

2)趙四購物恰好滿600元,假設(shè)他不放棄每次抽獎機會,求他獲得的獎金恰好為60元的概率.

【答案】1)分布見解析,期望為;(2.

【解析】

1)先明確X的可能取值,分別求解其概率,然后寫出分布列,利用期望公式可求期望;

2)獲得的獎金恰好為60元,可能是三次二等獎,也可能是一次一等獎,兩次三等獎,然后分別求解概率即可.

1)由題意知,隨機變量X的可能取值為1020,40

,,

所以,

即隨機變量X的概率分布為

X

10

20

40

P

所以隨機變量X的數(shù)學期望.

2)由題意知,趙四有三次抽獎機會,設(shè)恰好獲得60元為事件A

因為6020×3401010,

所以

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,四邊形是菱形,,平面,,,的中點.

(1)求證:平面平面;

(2)求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知直線l的參數(shù)方程是t為參數(shù)),以O為極點,x軸正半軸為極軸的極坐標系中,圓C的極坐標方程為

1)求直線l的普通方程和圓C的直角坐標方程;

2)由直線l上的點向圓C引切線,求切線長的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,AB,,,,,,E的中點.

1)求證:;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,四邊形ABCD為平行四邊形,BDDC,△PCD為正三角形,平面PCD⊥平面ABCD,EPC的中點.

1)證明:AP∥平面EBD;

2)證明:BEPC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,焦距為2,離心率.

1)求橢圓的標準方程;

2)過點作圓的切線,切點分別為,直線軸交于點,過點的直線交橢圓兩點,點關(guān)于軸的對稱點為,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為抗擊新型冠狀病毒,普及防護知識,某校開展了疫情防護網(wǎng)絡(luò)知識競賽活動.現(xiàn)從參加該活動的學生中隨機抽取了100名學生,將他們的比賽成績(滿分為100分)分為6組:,得到如圖所示的頻率分布直方圖.

1)求的值,并估計這100名學生的平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表);

2)在抽取的100名學生中,規(guī)定:比賽成績不低于80分為優(yōu)秀,比賽成績低于80分為非優(yōu)秀”.請將下面的2×2列聯(lián)表補充完整,并判斷是否有99%的把握認為比賽成績是否優(yōu)秀與性別有關(guān)

優(yōu)秀

非優(yōu)秀

合計

男生

40

女生

50

合計

100

參考公式及數(shù)據(jù):.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某高三年級男生中隨機抽取50名測量身高,測量發(fā)現(xiàn)被測學生身高全部介于之間,將測量結(jié)果按如下方式分成6組:第1,第2,…,第6,如圖是按上述分組方法得到的頻率分布直方圖.

1)由頻率分布直方圖估計該校高三年級男生身高的中位數(shù);

2)在這50名男生身高不低于的人中任意抽取2人,則恰有一人身高在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)判斷并說明函數(shù)的零點個數(shù).若函數(shù)所有零點均在區(qū)間內(nèi),求的最小值.

查看答案和解析>>

同步練習冊答案