袋中裝有黑球和白球共7個,從中任取2個球都是白球的概率為,現(xiàn)有甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取,…,取后不放回,直到兩人中有一人取到白球時即終止,每個球在每一次被取出的機(jī)會是等可能的,用ξ表示取球終止所需要的取球次數(shù).
(1)求袋中原有白球的個數(shù);
(2)求隨機(jī)變量ξ的概率分布;
(3)求甲取到白球的概率.
(1)3個白球(2)ξ的分布列為:
ξ
1
2
3
4
5
P





(3)
(1)設(shè)袋中原有n個白球,由題意知,∴n(n-1)=6,
得n=3或n=-2(舍去),即袋中原有3個白球.
(2)由題意,ξ的可能取值為1、2、3、4、5.
P(ξ=1)=;P(ξ=2)=;
P(ξ=3)=;P(ξ=4)=;
P(ξ=5)=.
所以ξ的分布列為:
ξ
1
2
3
4
5
P





(3)因為甲先取,所以甲只有可能在第1次、第3次和第5次取球,記“甲取到白球”為事件A,則P(A)=P(“ξ=1”,或“ξ=3”,或“ξ=5”).
∵事件“ξ=1”,或“ξ=3”,或“ξ=5”兩兩互斥,
∴P(A)=P(ξ=1)+P(ξ=3)+P(ξ=5)=.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在(
3x
+
1
x
20的展開式中,x的冪指數(shù)是整數(shù)的項共有( 。
A.3項B.4項C.5項D.6項

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知(
x
-
2
x2
)n
(n∈N*)展開式中二項式系數(shù)和為256.
(1)此展開式中有沒有常數(shù)項?有理項的個數(shù)是幾個?并說明理由.
(2)求展開式中系數(shù)最小的項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個銷售季度內(nèi),每售出1t該產(chǎn)品獲利潤500元,未售出的產(chǎn)品,每1t虧損300元。根據(jù)歷史資料,得到銷售季度內(nèi)市場需求量的頻率分布直方圖,如右圖所示。經(jīng)銷商為下一個銷售季度購進(jìn)了130t該農(nóng)產(chǎn)品。以x(單位:t,100≤x≤150)表示下一個銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的數(shù)量,T表示利潤.

(1)將T表示為x的函數(shù)
(2)根據(jù)直方圖估計利潤T不少于57000元的概率;
(3)在直方圖的需求量分組中,以各組的區(qū)間中點值代表該組的各個值需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點值的概率(例如:若x,則取x=105,且x=105的概率等于需求量落入[100,110,求T的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲、乙、丙三名射擊運(yùn)動員射中目標(biāo)的概率分別為、a、a(0<a<1),三人各射擊一次,擊中目標(biāo)的次數(shù)記為ξ.
(1)求ξ的分布列及數(shù)學(xué)期望;
(2)在概率P(ξ=i)(i=0、1、2、3)中,若P(ξ=1)的值最大,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

袋中有5只乒乓球,編號為1至5,從袋中任取3只,若以X表示取到的球中的最大號碼,試寫出X的概率分布.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

隨機(jī)變量ξ的分布列如圖,其中a,b,成等差數(shù)列,則        .
ξ
-1
0
1
P
a
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知隨機(jī)變量X~B(6,0.4),則當(dāng)η=-2X+1時,D(η)=(  )
A.-1.88B.-2.88C.5. 76D.6.76

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)隨機(jī)變量X的分布列為P(X=k)=(k=1,2,3,4,5),則P=________.

查看答案和解析>>

同步練習(xí)冊答案