(本小題滿分16分)設(shè)=(sinx,3cosx),=(sinx+2cosx,cosx),=(0, -1),

(1)記f(x)=,求f(x)的最小正周期;

(2)把f(x)的圖象沿x軸向右平移個單位,再把所得圖像上每一點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?img width=19 height=41 src="http://thumb.zyjl.cn/pic1/0688/80/65080.gif" >倍(>0)得到函數(shù)的圖像,若上為增函數(shù),求的最大值;

(3)記g(x)=,當(dāng)x∈[0,]時(shí),g(x)+m>0恒成立,求實(shí)數(shù)m的范圍。

f(x)=sinx(sinx+2cosx)+3cos2x=sin2x+2sinxcosx+3cos2x

     =sin2x+2cos2x+1=sin(2x+)+2      …………………………………3

(1)周期T=π    …………………………………………………4/

(2)   …………………10

(3)g(x)=sin2x+(3cosx-1)2=8cos2x-6cosx+2

設(shè)cosx=t,t∈[,1]

∴p(t)=8t2-6t+λ2+2

p(t)在[,1]上為增函數(shù)

∴p=p()=1,   …………………16

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2010江蘇卷)18、(本小題滿分16分)

在平面直角坐標(biāo)系中,如圖,已知橢圓的左、右頂點(diǎn)為A、B,右焦點(diǎn)為F。設(shè)過點(diǎn)T()的直線TA、TB與橢圓分別交于點(diǎn)M、,其中m>0,。

(1)設(shè)動點(diǎn)P滿足,求點(diǎn)P的軌跡;

(2)設(shè),求點(diǎn)T的坐標(biāo);

(3)設(shè),求證:直線MN必過x軸上的一定點(diǎn)(其坐標(biāo)與m無關(guān))。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年泰州中學(xué)高一下學(xué)期期末測試數(shù)學(xué) 題型:解答題

(本小題滿分16分)
函數(shù)(),
A=
(Ⅰ)求集合A;
(Ⅱ)如果,對任意時(shí),恒成立,求實(shí)數(shù)的范圍;
(Ⅲ)如果,當(dāng)“對任意恒成立”與“內(nèi)必有解”同時(shí)成立時(shí),求 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江蘇大豐新豐中學(xué)高二上期中考試文數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分16分)     本題請注意換算單位

某開發(fā)商用9000萬元在市區(qū)購買一塊土地建一幢寫字樓,規(guī)劃要求寫字樓每層建筑面積為2000平方米。已知該寫字樓第一層的建筑費(fèi)用為每平方米4000元,從第二層開始,每一層的建筑費(fèi)用比其下面一層每平方米增加100元。

(1)若該寫字樓共x層,總開發(fā)費(fèi)用為y萬元,求函數(shù)y=f(x)的表達(dá)式;

(總開發(fā)費(fèi)用=總建筑費(fèi)用+購地費(fèi)用)

(2)要使整幢寫字樓每平方米開發(fā)費(fèi)用最低,該寫字樓應(yīng)建為多少層?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆安徽省蚌埠市高二下學(xué)期期中聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分16分)設(shè)命題:方程無實(shí)數(shù)根; 命題:函數(shù)

的值域是.如果命題為真命題,為假命題,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省高一第三階段檢測數(shù)學(xué)卷 題型:解答題

(本小題滿分16分)

已知函數(shù)f(x)=為偶函數(shù),且函數(shù)yf(x)圖象的兩相鄰對稱軸間的距離為

(Ⅰ)求f)的值;

(Ⅱ)將函數(shù)yf(x)的圖象向右平移個單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)延長到原來的4倍,縱坐標(biāo)不變,得到函數(shù)yg(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.

 

查看答案和解析>>

同步練習(xí)冊答案