精英家教網 > 高中數學 > 題目詳情

【題目】已知的直角頂點軸上,點為斜邊的中點,且平行于軸.

(Ⅰ)求點的軌跡方程;

(Ⅱ)設點的軌跡為曲線,直線的另一個交點為.以為直徑的圓交軸于即此圓的圓心為,的最大值.

【答案】(1)(2)

【解析】試題分析:(1)設的中點的坐標為,根據,;(2)(2)討論BC的斜率,求出圓P的半徑和橫坐標,計算最小值,進而得到的最大值.

詳解:

設點的坐標為(,則的中點的坐標為,點的坐標為,

,得,

經檢驗,當點運動至原點時,重合,不合題意舍去.

所以,軌跡的方程為.

(Ⅱ)依題意,可知直線不與軸重合,設直線的方程為,點、的坐標分別為(,圓心的坐標為.

可得

的半徑

.

過圓心于點,則.

中,即垂直于軸時,取得最小值為,取得最大值為,

所以,的最大值為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】給出下列命題:

①函數是奇函數;

②將函數的圖像向左平移個單位長度,得到函數的圖像;

③若是第一象限角且,則;

是函數的圖像的一條對稱軸;

⑤函數的圖像關于點中心對稱。

其中,正確的命題序號是______________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】關于函數,有下列結論:

的定義域為(-1, 1); 的值域為(, );

的圖象關于原點成中心對稱; 在其定義域上是減函數;

⑤對的定義城中任意都有.

其中正確的結論序號為__________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】四棱錐中,,底面是菱形,且,,過點作直線,為直線上一動點.

(1)求證:;

(2)當面時,求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知命題p,;命題q:方程表示雙曲線.

⑴若命題p為真命題,求實數m的取值范圍;

⑵若命題為真命題,為假命題,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,某公園有三條觀光大道圍成直角三角形,其中直角邊,斜邊.現有甲、乙、丙三位小朋友分別在大道上嬉戲,所在位置分別記為點

(1)若甲乙都以每分鐘的速度從點出發(fā)在各自的大道上奔走,到大道的另一端

時即停,乙比甲遲2分鐘出發(fā),當乙出發(fā)1分鐘后,求此時甲乙兩人之間的距離;

(2)設,乙丙之間的距離是甲乙之間距離的2倍,且,請將甲

乙之間的距離表示為θ的函數,并求甲乙之間的最小距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,PA⊥底面ABC, .點D,E,N分別為棱PA,PC,BC的中點,M是線段AD的中點,PA=AC=4,AB=2.

(Ⅰ)求證:MN∥平面BDE;

(Ⅱ)求二面角C-EM-N的正弦值;

(Ⅲ)已知點H在棱PA上,且直線NH與直線BE所成角的余弦值為,求線段AH的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,曲線過點,其參數方程為為參數, ),以為極點, 軸非負半軸為極軸,建立極坐標系,曲線的極坐標方程為.

(1)求曲線的普通方程和曲線的直角坐標方程;

(2)求已知曲線和曲線交于兩點,且,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數fx)=|xa|+2a,且不等式fx)≤4的解集為{x|1x3}

1)求實數a的值.

2)若存在實數x0,使fx0)≤5m2+mf(﹣x0)成立,求實數m的取值范圍.

查看答案和解析>>

同步練習冊答案