如圖2-31:設(shè)a、b是異面直線,A∈a,B∈b,AB⊥a,AB⊥b,過(guò)AB的中點(diǎn)O作平面α與a、b分別平行,M、N分別是a、b上任意兩點(diǎn),MN與α交于點(diǎn)P,

求證:P是MN的中點(diǎn)。


解析:

連結(jié)AN,交平面α于點(diǎn)Q,連結(jié)PQ,OQ。

∵ b//α,b平面ABN,平面ABN∩α=OQ,

∴b// OQ,又O為AB有中點(diǎn),∴Q為AN的中點(diǎn)。

∵a//α,a 平面AMN,平面AMN∩α=PQ,

∴a// PQ,

∴P是MN的中點(diǎn)。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•南京模擬)A.選修4-1幾何證明選講
如圖,△ABC的外接圓的切線AE與BC的延長(zhǎng)線相交于點(diǎn)E,∠BAC的平分線與BC交于點(diǎn)D.
求證:ED2=EB•EC.
B.矩陣與變換
已知矩陣A=
2-1
-43
,
4-1
-31
,求滿足AX=B的二階矩陣X.
C.選修4-4 參數(shù)方程與極坐標(biāo)
若兩條曲線的極坐標(biāo)方程分別為ρ=1與ρ=2cos(θ+
π
3
),它們相交于A,B兩點(diǎn),求線段AB的長(zhǎng).
D.選修4-5 不等式證明選講設(shè)a,b,c為正實(shí)數(shù),求證:a3+b3+c3+
1
abc
≥2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•韶關(guān)二模)在△ABC中,三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,其中c=2,且
cosA
cosB
=
b
a
=
3
1

(1)求證:△ABC是直角三角形;
(2)如圖,設(shè)圓O過(guò)A,B,C三點(diǎn),點(diǎn)P位于劣弧
AC
上,求△PAC面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將楊輝三角中的奇數(shù)換成1,偶數(shù)換成0,得到如圖所示的0-1三角數(shù)表.從上往下數(shù),第1次全行的數(shù)都為1的是第1行,第2次全行的數(shù)都為1的是第3行,…,設(shè)第n次全行的數(shù)都為1的是第x行;第61行中1的個(gè)數(shù)是y,則x、y的值分別是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案