(本小題滿分12分)
如圖,已知,直線,為平面上的動(dòng)點(diǎn),過(guò)點(diǎn)的垂線,垂足為點(diǎn),且
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)過(guò)點(diǎn)的直線交軌跡點(diǎn),交直線于點(diǎn)
(1)已知,求的值;
(2)求的最小值.

(1)0
(2)16
解法一:(Ⅰ)設(shè)點(diǎn),則,由得:
,化簡(jiǎn)得
(Ⅱ)(1)設(shè)直線的方程為:

設(shè),又,
聯(lián)立方程組,消去得:,
,得:
,整理得:
,

解法二:(Ⅰ)由得:,
,
所以點(diǎn)的軌跡是拋物線,由題意,軌跡的方程為:
(Ⅱ)(1)由已知,得
.…………①
過(guò)點(diǎn)分別作準(zhǔn)線的垂線,垂足分別為,
則有:.…………②
由①②得:,即
(Ⅱ)(2)解:由解法一,


當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,所以最小值為16.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

.設(shè)分別為具有公共焦點(diǎn)的橢圓和雙曲線的離心率,為兩曲線的一個(gè)公共點(diǎn),且滿足,則的值為
A.B.1C.2D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分)
已知點(diǎn)A(2,0),. P為上的動(dòng)點(diǎn),線段BP上的點(diǎn)M滿足|MP|=|MA|.
 。á瘢┣簏c(diǎn)M的軌跡C的方程;
 。á颍┻^(guò)點(diǎn)B(-2,0)的直線與軌跡C交于S、T兩點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知平面,直線l,點(diǎn)P∈l,平面、間的距離為5,則在內(nèi)到點(diǎn)P的距離為13且到直線l的距離為的點(diǎn)的軌跡是(  )
A.一個(gè)圓B.四個(gè)點(diǎn)C.兩條直線D.雙曲線的一支

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

,則方程表示的曲線只可能是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如右圖所示,“嫦娥一號(hào)”探月衛(wèi)星沿地月轉(zhuǎn)移軌道飛向月球,在月
球附近一點(diǎn)P變軌進(jìn)入以月球球心F為一個(gè)焦點(diǎn)的橢圓軌道Ⅰ繞月飛
行,之后衛(wèi)星在P點(diǎn)第二次變軌進(jìn)入仍以F為一個(gè)焦點(diǎn)的橢圓軌道Ⅱ
繞月飛行,最終衛(wèi)星在P點(diǎn)第三次變軌進(jìn)入以F為圓心的圓形軌道Ⅲ
繞月飛行,若用分別表示橢軌道Ⅰ和Ⅱ的焦距,用
分別表示橢圓軌道Ⅰ和Ⅱ的長(zhǎng)軸的長(zhǎng),給出下列式子:
、、    ④.
其中正確式子的序號(hào)是 (    )
A.①③B.②③C.①④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(13分)已知點(diǎn),直線,為平面上的動(dòng)點(diǎn),過(guò)點(diǎn)作直線的垂線,垂足為,且
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)已知圓過(guò)定點(diǎn),圓心在軌跡上運(yùn)動(dòng),且圓軸交于、兩點(diǎn),設(shè),,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

、極坐標(biāo)方程ρcos2θ=1所表示的曲線是 ( )
A.兩條相交直線B.圓C.橢圓D.雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

過(guò)點(diǎn)的動(dòng)直線軸的交點(diǎn)分別為,過(guò)分別作軸的垂線,則兩垂線交點(diǎn)的軌跡方程為:                            .

查看答案和解析>>

同步練習(xí)冊(cè)答案