【題目】設(shè)經(jīng)過(guò)點(diǎn)的直線與拋物線相交于、兩點(diǎn),經(jīng)過(guò)點(diǎn)的直線與拋物線相切于點(diǎn).

1)當(dāng)時(shí),求的取值范圍;

2)問(wèn)是否存在直線,使得成立,若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

【答案】1;(2.

【解析】

1)設(shè),,因?yàn)橹本經(jīng)過(guò)定點(diǎn),所以可設(shè)直線的方程為,則由,利用韋達(dá)定理和弦長(zhǎng)公式,化簡(jiǎn)可得,再根據(jù)函數(shù)的性質(zhì)即可求出結(jié)果;

2)假設(shè)存在直線,使得成立,不妨設(shè),,則由, 利用韋達(dá)定理和弦長(zhǎng)公式可得;又,所以;由得到,由此即可求出結(jié)果.

1)設(shè),,

因?yàn)橹本經(jīng)過(guò)定點(diǎn),所以可設(shè)直線的方程為,則由,,∴,

.

2)假設(shè)存在直線,使得成立,不妨設(shè),

則由,

,,∴,

,

,∴,

得到

兩邊平方得,即,得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρasinθa≠0.

1)求圓C的直角坐標(biāo)方程與直線l的普通方程;

2)設(shè)直線l截圓C的弦長(zhǎng)是半徑長(zhǎng)的倍,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《山東省高考改革試點(diǎn)方案》規(guī)定:從2017年秋季高中入學(xué)的新生開(kāi)始,不分文理科;2020年開(kāi)始,高考總成績(jī)由語(yǔ)數(shù)外3門(mén)統(tǒng)考科目和物理、化學(xué)等六門(mén)選考科目構(gòu)成.將每門(mén)選考科目的考生原始成績(jī)從高到低劃分為A、B+、B、C+、C、D+、D、E共8個(gè)等級(jí).參照正態(tài)分布原則,確定各等級(jí)人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.選考科目成績(jī)計(jì)入考生總成績(jī)時(shí),將A至E等級(jí)內(nèi)的考生原始成績(jī),依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級(jí)成績(jī).

某校高一年級(jí)共2000人,為給高一學(xué)生合理選科提供依據(jù),對(duì)六個(gè)選考科目進(jìn)行測(cè)試,其中物理考試原始成績(jī)基本服從正態(tài)分布N(60,169).

(Ⅰ)求物理原始成績(jī)?cè)趨^(qū)間(47,86)的人數(shù);

(Ⅱ)按高考改革方案,若從全省考生中隨機(jī)抽取3人,記X表示這3人中等級(jí)成績(jī)?cè)趨^(qū)間[61,80]的人數(shù),求X的分布列和數(shù)學(xué)期望.

(附:若隨機(jī)變量,則,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知:a52a2+3a2,,a14成等比數(shù)列.

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;

(Ⅱ)設(shè)正項(xiàng)數(shù)列{bn}滿足bn2Sn+1Sn+1+2,求證:b1+b2++bnn+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在貫徹中共中央、國(guó)務(wù)院關(guān)于精準(zhǔn)扶貧政策的過(guò)程中,某單位在某市定點(diǎn)幫扶甲、乙兩村各50戶貧困戶為了做到精準(zhǔn)幫扶,工作組對(duì)這100戶村民的年收入情況、勞動(dòng)能力情況、子女受教育情況、危舊房情況、患病情況等進(jìn)行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)化為各戶的貧困指標(biāo)x,將指標(biāo)x按照分成五組,得到如圖所示的頻率分布直方圖.

規(guī)定若,則認(rèn)定該戶為絕對(duì)貧困戶,否則認(rèn)定該戶為相對(duì)貧困戶,且當(dāng)時(shí),認(rèn)定該戶為低收入戶;當(dāng)時(shí),認(rèn)定該戶為亟待幫助戶,已知此次調(diào)查中甲村的絕對(duì)貧困戶占甲村貧困戶的24%.

1)完成下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為絕對(duì)貧困戶數(shù)與村落有關(guān);

甲村

乙村

總計(jì)

絕對(duì)貧困戶

相對(duì)貧困戶

總計(jì)

2)若兩村低收入戶中乙村低收入戶占比為,兩村亟待幫助戶中乙村亟待幫助戶占比為,且乙村貧困指標(biāo)在上的戶數(shù)成等差數(shù)列,試估計(jì)乙村貧困指標(biāo)x的平均值.

附:,其中.

0.15

0.10

0.05

0.025

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)棋藝協(xié)會(huì)定期舉辦以棋會(huì)友的競(jìng)賽活動(dòng),分別包括中國(guó)象棋圍棋、五子棋、國(guó)際象棋四種比賽,每位協(xié)會(huì)會(huì)員必須參加其中的兩種棋類(lèi)比賽,且各隊(duì)員之間參加比賽相互獨(dú)立;已知甲同學(xué)必選中國(guó)象棋,不選國(guó)際象棋,乙同學(xué)從四種比賽中任選兩種參與.

1)求甲參加圍棋比賽的概率;

2)求甲、乙兩人參與的兩種比賽都不同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)某省的高考改革方案,考生應(yīng)在3門(mén)理科學(xué)科(物理、化學(xué)、生物)和3門(mén)文科學(xué)科(歷史、政治、地理)的6門(mén)學(xué)科中選擇3門(mén)學(xué)科參加考試.根據(jù)以往統(tǒng)計(jì)資料,1位同學(xué)選擇生物的概率為0.5,選擇物理但不選擇生物的概率為0.2,考生選擇各門(mén)學(xué)科是相互獨(dú)立的.

1)求1位考生至少選擇生物、物理兩門(mén)學(xué)科中的1門(mén)的概率;

2)某校高二段400名學(xué)生中,選擇生物但不選擇物理的人數(shù)為140,求1位考生同時(shí)選擇生物、物理兩門(mén)學(xué)科的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中,側(cè)面為菱形,

1)證明:;

2)若,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的長(zhǎng)軸長(zhǎng)為4,且經(jīng)過(guò)點(diǎn).

1)求橢圓的方程;

2)直線的斜率為,且與橢圓相交于,兩點(diǎn)(異于點(diǎn)),過(guò)的角平分線交橢圓于另一點(diǎn).證明:直線與坐標(biāo)軸平行.

查看答案和解析>>

同步練習(xí)冊(cè)答案