4.袋中裝有大小相同,顏色不同的10張卡片,其中紅色卡片5張,白色卡片3張,藍(lán)色卡片2張,現(xiàn)從中隨機(jī)抽取一張卡片,確定顏色后再放回袋中,若取出的是白色卡片,則不再抽取,否則,繼續(xù)抽取卡片,但最多抽取3次.
(Ⅰ)記“恰好取到2次紅色卡片”為事件A,求P(A);
(Ⅱ)將抽取卡片的次數(shù)記為ξ,求隨機(jī)變量ξ的概率分布列及數(shù)學(xué)期望E(ξ).

分析 (I)分類討論,①前兩次都取紅色卡片,②第一次取紅色卡片,第二次取藍(lán)色卡片,第三次取紅色卡片.③第一次取藍(lán)色卡片,第二次取紅色卡片,第三次取紅色卡片.利用古典概率計(jì)算公式即可得出.
(II)ξ的取值為1,2,3.,第一次取白色卡片即可停止;第一次取藍(lán)色或紅色卡片,第二次取白色卡片.第一次與第二次取紅色或藍(lán)色卡片,第三次無論取什么卡片都停止.利用古典概率計(jì)算公式與相互對(duì)立事件的概率計(jì)算公式即可得出.

解答 解:(I)P(A)=$\frac{5×5}{10×10}$+$\frac{5×2×5}{1{0}^{3}}$+$\frac{2×5×5}{1{0}^{3}}$=$\frac{7}{20}$.
(II)ξ的取值為1,2,3.
則P(ξ=1)=$\frac{3}{10}$,P(ξ=2)=$\frac{7×3}{1{0}^{2}}$=$\frac{21}{100}$,P(ξ=3)=1-P(ξ=1)-P(ξ=2)=$\frac{49}{100}$.
∴Eξ=1×$\frac{3}{10}$+2×$\frac{21}{100}$+3×$\frac{49}{100}$=$\frac{219}{100}$=2.19.

點(diǎn)評(píng) 本題考查了古典概率的概率計(jì)算公式及其相互對(duì)立事件的概率計(jì)算公式及其隨機(jī)變量的數(shù)學(xué)期望,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北正定中學(xué)高二上月考一數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

下列結(jié)論判斷正確的是( )

A.任意兩條直線確定一個(gè)平面

B.三條平行直線最多確定三個(gè)平面

C.棱長為1的正方體的內(nèi)切球的表面積為

D.若平面平面,平面平面,則平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.等比數(shù)列{an}的首項(xiàng)為2,項(xiàng)數(shù)為奇數(shù),其奇數(shù)項(xiàng)之和為$\frac{85}{32}$,偶數(shù)項(xiàng)之和為$\frac{21}{16}$,這個(gè)等比數(shù)列前n項(xiàng)的積為Tn(n≥2),則Tn的最大值為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=$\frac{1}{3}$x3+ax2+2bx+c有兩個(gè)極值點(diǎn)x1,x2,且-1<x1<1<x2<2,則直線bx-(a-1)y+3=0的斜率的取值范圍$(-\frac{2}{5},\frac{2}{3})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若$\sqrt{3}$(acosB+bcosA)=2csinC,a+b=4,且△ABC的面積的最大值為$\sqrt{3}$,則此時(shí)△ABC的形狀為( 。
A.銳角三角形B.直線三角形C.等腰三角形D.正三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.積分$\int_0^1{{e^x}dx}$的值為(  )
A.eB.e-1C.1D.e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知Sn是數(shù)列{an}的前n項(xiàng)和,且滿足Sn+Sn-1=tan2(其中t為常數(shù),t>0,n≥2),已和a1=0,且當(dāng)n≥2時(shí),an>0.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若對(duì)于n≥2,n∈N*,不等式$\frac{1}{{{a_2}{a_3}}}+\frac{1}{{{a_3}{a_4}}}+\frac{1}{{{a_4}{a_5}}}+…+\frac{1}{{{a_n}{a_{n+1}}}}<2$恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知△ABC的三個(gè)頂點(diǎn)在以O(shè)為球心的球面上,且 cosA=$\frac{{2\sqrt{2}}}{3}$,BC=1,AC=3,且球O的表面積為16π,則三棱錐O-ABC的體積為(  )
A.$\frac{{\sqrt{15}}}{6}$B.$\frac{{\sqrt{14}}}{6}$C.$\frac{{2\sqrt{2}}}{3}$D.$\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ex-a(x+1),
(1)求f(x)的單調(diào)區(qū)間及a=1時(shí)的極值;
(2)解關(guān)于x的不等式ex(x-1)>(x-1)($\frac{1}{2}$x2+x+1).

查看答案和解析>>

同步練習(xí)冊答案