設拋物線C:y2=3px(p>0)的焦點為F,點M在C上,|MF|=5,若以MF為直徑的圓過點(0,2),則C的方程為(  )
分析:根據(jù)拋物線方程算出|OF|=
3p
4
,設以MF為直徑的圓過點A(0,2),在Rt△AOF中利用勾股定理算出|AF|=
4+
9p2
16
.再由直線AO與以MF為直徑的圓相切得到∠OAF=∠AMF,Rt△AMF中利用∠AMF的正弦建立關系式,從而得到關于p的方程,解之得到實數(shù)p的值,進而得到拋物線C的方程.
解答:解:∵拋物線C方程為y2=3px(p>0)
∴焦點F坐標為(
3p
4
,0),可得|OF|=
3p
4

∵以MF為直徑的圓過點(0,2),
∴設A(0,2),可得AF⊥AM
Rt△AOF中,|AF|=
22+(
3p
4
)2
=
4+
9p2
16

∴sin∠OAF=
|OF|
|AF|
=
3p
4
4+
9p2
16

∵根據(jù)拋物線的定義,得直線AO切以MF為直徑的圓于A點,
∴∠OAF=∠AMF,可得Rt△AMF中,sin∠AMF=
|AF|
|MF|
=
3p
4
4+
9p2
16
,
∵|MF|=5,|AF|=
4+
9p2
16

4+
9p2
16
5
=
3p
4
4+
9p2
16
,整理得4+
9p2
16
=
15p
4
,解之可得p=
4
3
或p=
16
3

因此,拋物線C的方程為y2=4x或y2=16x
故選:C
點評:本題給出拋物線一條長度為5的焦半徑MF,以MF為直徑的圓交拋物線于點(0,2),求拋物線的方程,著重考查了拋物線的定義與簡單幾何性質、圓的性質和解直角三角形等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設拋物線C:y2=4x的焦點為F,直線l過F且與C交于A,B兩點.若|AF|=3|BF|,則l的方程為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•長寧區(qū)二模)設拋物線C:y2=2px(p>0)的焦點為F,過F且垂直于x軸的直線與拋物線交于P1,P2兩點,已知|P1P2|=8.
(1)求拋物線C的方程;
(2)設m>0,過點M(m,0)作方向向量為
d
=(1,
3
)
的直線與拋物線C相交于A,B兩點,求使∠AFB為鈍角時實數(shù)m的取值范圍;
(3)①對給定的定點M(3,0),過M作直線與拋物線C相交于A,B兩點,問是否存在一條垂直于x軸的直線與以線段AB為直徑的圓始終相切?若存在,請求出這條直線;若不存在,請說明理由.
②對M(m,0)(m>0),過M作直線與拋物線C相交于A,B兩點,問是否存在一條垂直于x軸的直線與以線段AB為直徑的圓始終相切?(只要求寫出結論,不需用證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•黃浦區(qū)二模)設拋物線C:y2=2px(p>0)的焦點為F,經過點F的動直線l交拋物線C于A(x1,y1),B(x2,y2)兩點,且y1y2=-4.
(1)求拋物線C的方程;
(2)若直線2x+3y=0平分線段AB,求直線l的傾斜角.
(3)若點M是拋物線C的準線上的一點,直線MF,MA,MB的斜率分別為k0,k1,k2.求證:當k0=1時,k1+k2為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•黃浦區(qū)二模)設拋物線C:y2=2px(p>0)的焦點為F,經過點F的動直線l交拋物線C于點A(x1,y1),B(x2,y2)且y1y2=-4.
(1)求拋物線C的方程;
(2)若
OE
=2(
OA
+
OB
)
(O為坐標原點),且點E在拋物線C上,求直線l傾斜角;
(3)若點M是拋物線C的準線上的一點,直線MF,MA,MB的斜率分別為k0,k1,k2.求證:當k0為定值時,k1+k2也為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設拋物線C:y2=4x的焦點為F,直線l過F且與C交于A,B兩點.若|AF|=3|BF|,則l的方程為( 。

查看答案和解析>>

同步練習冊答案